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SUMMARY 

 

As a contribution to improving understanding of the mechanisms and relationships that exist within shallow 

peatland ecosystems, we report the results of monitoring five-years’ recovery after restoration of a forestry-

drained sloping rich fen site in the Central Sudetes in south-west Poland. Over the last 100 years, drainage 

ditches installed for forestry management purposes have affected the hydrology, soil and vegetation of this 

site. Spruce stands were present until 2010, when restoration started with blocking of ditches and 

clearcutting/removal of trees. The main objective of our study was to determine the effects of these restoration 

activities on aspects of hydrology and soil condition. We hypothesised that the five years following restoration 

could provide sufficient time to improve: 1) water table level and water quality, and 2) the physical and 

chemical properties of the organic soil. Restoration had a positive effect on water table level as early as two 

years after implementation of drain blocking and reduction of tree cover. However, five years was not 

sufficient time to reverse the decline in water quality. The concentrations of labile carbon forms in water, as 

well as water colour (Abs400), were similar in 2010 and 2015. Due to peatland rewetting and peat swelling a 

decrease in peat bulk density was observed. However, this outcome was identified only in the bottom organic 

soil horizons. This, in turn, affected the thickness of the peat layer and the altitude of the soil surface. Five 

years of recovery is insufficient to stop the mineralisation of organic matter, as indicated by lower TOC/TN 

values, slightly higher concentrations of labile forms of carbon, and the W1 index of secondary transformation. 
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INTRODUCTION 

 

Peatlands occupy a relatively small percentage 

(~3 %) of the Earth's surface. Nonetheless, they are 

globally important ecosystems (Gorham 1991), 

fulfilling manifold ecological functions such as 

carbon accumulation (Chimner & Cooper 2003, 

Armstrong et al. 2010), water retention (Holden et al. 

2004, Strack et al. 2008), biodiversity maintenance 

(Tousignant et al. 2010) and global climate 

regulation (Gorham 1991). Their functions depend 

on various processes, both large-scale (e.g. water 

table level, evapotranspiration, nutrient runoff) and 

small-scale (e.g. capillary flow of water in soil, soil 

water retention) (Waddington 2008). 

In the last century, an increase in both direct and 

indirect human impacts on peatlands was observed 

(Heller & Zeitz 2012, Labaz & Kabala 2016, 

Drewnik et al. 2018). Peatlands were utilised mainly 

for agriculture (e.g. Kalisz et al. 2015, Lamers et al. 

2015, Glina et al. 2016c, Lipka et al. 2017), peat 

extraction (e.g. Farrell & Doyle 2003, McCarter & 

Price 2013) and forestry (e.g. Ojanen et al. 2013, 

Glina et al. 2016a). All of these land uses require 

drainage to lower the water table (Laiho & Pearson 

2016, Chimner et al. 2018, Drewnik et al. 2018). 

Drained peatlands are of global concern because of 

their altered soil physical and water conditions 

(Schimelpfenig et al. 2014), disturbed carbon cycle 

(Strack et al. 2008), degrading soil (Glina et al. 

2016a, 2016c) and vegetation cover (Tousignant et 

al. 2010), and increased fire risk (Mangan et al. 2012, 

Glina et al. 2017). It is crucial to avoid further loss of 

carbon and to prevent fragmentation of these 

important ecosystems (Anderson & Peace 2017). 

Peatland restoration has expanded in scale and 

scope since the late twentieth century (Parry et al. 

2014a). The key event was implementation of the 

Ramsar Convention - the framework for conservation 

and wise use of wetlands - in 1975. This document 

was subsequently expanded by the addition of several 

thematic resolutions and, finally, the Guidelines for 

Global Action on Peatlands were published in 2002 

(Ramsar Convention Contracting Parties 2002). 

Peatland restoration has now become one of the most 

popular topics in ecological research and the subject 

of numerous publications (Grand-Clement et al. 

2015). 



B. Glina et al.   FIVE-YEAR EFFECTIVENESS OF RESTORATION OF A SHALLOW MOUNTAIN FEN 

 
Mires and Peat, Volume 21 (2018), Article 11, 1–15, http://www.mires-and-peat.net/, ISSN 1819-754X 

© 2018 International Mire Conservation Group and International Peatland Society, DOI: 10.19189/MaP.2017.OMB.311 
 

2 

The characteristics of peatland following 

restoration may provide a set of essential information 

(Grand-Clement et al. 2015), in particular about the 

release of dissolved organic carbon, the 

transformation of soil physical properties, and 

vegetation change. The effects of restoration are 

discussed primarily in relation to extracted (cutover) 

Sphagnum-dominated bogs in the Boreal zone (e.g. 

Sottocornola et al. 2007, Wilson et al. 2011, 

McCarter & Price 2013) and Central European 

lowlands (e.g. Poschlod et al. 2007, Zerbe et al. 

2013). Other publications focus on the outcomes of 

restoring peatlands that were previously drained for 

agriculture (e.g. Cooper et al. 1998, Chimner & 

Cooper 2003, Schimelpfenig et al. 2014) or forestry 

(e.g. Mälson et al. 2009, Haapalehto et al. 2011, 

Koskinen et al. 2017, Nicia et al. 2017), in both 

lowlands and mountains. The effects of restoration on 

shallow fens have received less attention, resulting in 

only a small amount of information in the literature 

(Grand-Clement et al. 2015) even though, on 

average, 78 % of the mires in Central European 

countries belong to this specific ecosystem type 

(Bragg & Lindsay 2003). There is a need for better 

understanding of the mechanisms and relationships 

that exist within shallow peatland ecosystems, and 

especially in restored sloping fens. For this reason, 

the attention focused on such peatlands should be 

increased (Chimner et al. 2016). 

In Poland, forestry-drained mountain peatlands 

are located mainly in the Sudetes range in the south-

west of the country (Glina et al. 2016a). This type of 

land use was particularly common in the Central 

Sudetes at the turn of the 19th and 20th centuries 

(Glina et al. 2017). Vast peatland complexes were 

drained by the open-channel method (Kabała 2015) 

to allow planting of Norway spruce (Picea abies), 

which currently dominates 83 % of the stands (Gałka 

et al. 2014). Long-term forestry management 

subsequently caused multidirectional changes in the 

Central Sudetes peatlands (Bogacz and Roszkowicz 

2010, Bogacz et al. 2012, Glina et al. 2016a). For that 

reason, in the year 2010 the local authorities in co-

operation with the ecological organisation “Lubuski 

Klub Przyrodników” started a restoration programme 

on several peatland areas in the Stolowe Mountains 

National Park, including a unique area of sloping rich 

fen (Sienkiewicz & Wójcik 2012). This type of 

peatland is considered to be one of the most species-

rich ecosystems (Mälson et al. 2009, Lamers et al. 

2015), and thus an important target for restoration. 

However, methods for restoring drained sloping 

peatlands are limited and poorly tested 

(Schimelpfenig et al. 2014), due to numerous 

technical constraints including difficulties with 

heavy machinery use and site access (Joosten & 

Clarke 2002). 

Here we report our findings from a monitoring 

study of this sloping rich fen over a period of five 

years following restoration. The main objective was 

to assess the impact of restoration activities 

(clearcutting of trees and shrubs, ditch blocking) on 

fen site conditions. We hypothesised that the five 

years following restoration could provide sufficient 

time to improve: 1) water table level and water 

quality; 2) the physical and chemical properties of the 

organic soils. 

 

 

METHODS 

 

Study area: location, genesis, vegetation and 

restoration works 

The restored fen is located in the Stołowe Mountains 

of the Central Sudetes (Figure 1A). This mountain 

range in south-western Poland is composed mainly of 

upper Cretaceous sandstones, siltstones (mudstones) 

and claystones (Waroszewski et al. 2015). According 

to the Köppen-Geiger climate classification, the 

region is located in the humid continental climate 

zone, with warm summers (Kottek et al. 2006). For 

the six-year period 2010–2015, the mean annual air 

temperature of the region was 6.9 °C and the mean 

annual precipitation was 726 mm. Meteorological 

data were obtained from Słoszów and Kudowa 

stations, respectively. 

Peatlands cover approximately 2.5 % (132 ha) of 

the Stołowe Mountains (Sienkiewicz & Wójcik 

2012). The current peatland areas are only remnants 

of much larger complexes (Glina et al. 2016a) which 

have become degraded due to long-term drainage for 

forestry (Glina et al. 2017). As a result, it was 

impossible to identify an undisturbed peatland as a 

reference site for this study. The study site itself was 

a sloping (at 3–4 degrees) fen on the northern slope 

of the Skalniak ridge (840–850 m a.s.l.) with an 

inflow of mineral-rich groundwater (Glina et al. 

2016b). This small (0.40 ha) rectangle-shaped fen is 

of late Holocene origin, and peat formation started 

here ca. 3320 BP (Glina et al. 2017). Throughout the 

late Holocene this area was covered by alder (Alnus 

spp.) stands with an undergrowth of vascular plants, 

particularly sedges (Carex spp.) until, around the 

year 1800, a Norway spruce (Picea abies) 

monoculture was planted (Gałka et al. 2014, Glina et 

al. 2017). More than 100 years of drainage (by 

ditches running parallel to the slope) connected with 

forestry management had affected the hydrology, soil 

cover and vegetation structure of the site. Spruce 

stands were present until restoration started in 2010. 
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Figure 1. Location of the study area (A) and locations of the sampling plots within the research transect (B). 

 

 

Restoration was conducted in two steps. In the 

first step the site was cleared of ‘undesirable’ grasses, 

shrubs and spruce trees (Figure 2A) and the resultant 

biomass (logging slash) was removed to reduce 

evapotranspiration, limit nutrient pools and avert 

acidification of the fen soils via coniferous tree 

remnants. The trees and shrubs were removed by 

clearcutting to allow peat-forming species to 

regenerate from the seed bank in the peat - which 

happened every September until the year 2012. In the 

second step, drainage ditches were blocked to further 

rewet the site. Two ditches were blocked by installing 

one single-wall wooden dam in each ditch 

(Figure 2B) in October 2010. The dams were made 

using hand operated tools, from wood acquired in 

situ. This restoration technique is particularly 

appropriate for sloping peatlands, where ditches do 

not naturally fill with peat or mineral sediment due to 

steep gradients and rapid surface runoff 

(Schimelpfenig et al. 2014). 

A response of vegetation to the restoration actions 

applied was noticeable after two years (in 2013). 

After accomplishing the first step of restoration the 

surface of the peatland was free of trees and shrubs. 

Single clumps of Carex paniculata were visible and 

identifiable, especially in the upslope half of the site 

(see Figure 2C). The first changes in plant 

community structure were observed during the 

summer of 2013, when numerous peat-forming plant 

species such as Carex paniculata, Carex flava, Carex 

remota, Carex effusus, Equisetum limosum, 

Equisetum fluviatile, Equisetum palustre and Scirpus 

sylvaticus appeared or regenerated within the 

peatland. An especially noteworthy arrival was 

Veratrum lobelianum (Figure 2D), a characteristic 

species of damp habitats which is protected by law in 

Poland. By 2014, frequent alder (Alnus incana) 

seedlings were present. In the final year of 

observations (2015) the young alder trees were up to 

one metre tall and were growing mostly in the 

uppermost part of the fen (Figure 2E). 

 

Field survey 

The research transect consisted of three 4 × 4 m 

sampling plots which were laid out between two 

drainage ditches, approximately 10 m from each. The 

transect, like the ditches, ran parallel to the slope. 

Sampling plots were located as follows: Plot 1 

(coordinates 16° 20' 25.2″ E, 50° 28' 06.1″ N) on the 

uppermost part of the slope, Plot 2 (16° 20' 23.9″ E, 

50° 28' 06.3″ N) in the middle and Plot 3 (16° 20' 

21.8″ E, 50° 28' 05.0″ N) on the lowermost part of the 

slope (Figure 1B). 

Samples of soil and water were collected on two 

occasions, in September 2010 (just after 

accomplishing the first step of restoration) and in 

September 2015. Three replicate peat cores were 

extracted from each sampling plot using an “Instorf” 

peat corer (chamber 50 cm long, 5.2 cm in diameter) 

to obtain representative soil material for laboratory 

analysis and to measure the total thickness of the peat 

layer. Before sampling, the morphology of the 

studied soils was described according to the 

Guidelines for Soil Description (Jahn et al. 2006). 

The soils were classified on the basis of 

morphological features and physico-chemical 

properties according to the FAO-WRB classification 

(IUSS Working Group WRB 2015). Samples (70 in 

total) were collected from genetic soil horizons, using 

small metal rings. 
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Figure 2. (A) Spruce branches, slash and trunks on the peatland surface (the effect of clearcutting trees) in 

September 2010. (B) Single-wall wooden dam in the drainage ditch, March 2011. (C) Regeneration of Carex 

paniculata within Plot 2, June 2013. (D) Veratrum lobelianum entering the fen, June 2014. (E) Young Alnus 

incana trees in the uppermost part of peatland (Plot 1), August 2015. 

 

 

 

For monitoring of water table level and water 

sampling at each plot, dipwells constructed using 

perforated PVC pipes (10 cm diameter) were 

installed in boreholes that were backfilled with native 

soil. A single set consisted of two dipwells with 

filters, which were capped to prevent contamination. 

Water table level was monitored monthly from 

March to October (snow-free period) during the years 

2010–2015 (Figure 3). Mixed water samples were 

collected in polyethylene bottles using a hand pump. 

Water pH was measured in the field using a CP-105 

ELMETRON pH meter, and EC was measured using 

conductivity meter CPC-411. Soil and water samples 

were transported in a lightproof insulated box 

containing ice packs to ensure constant temperature. 

 

Laboratory analyses 

Soil 

Bulk density (BD) was determined by drying 5 cm3 

sub-samples of peat to constant weight at 105 ºC, 

then dividing dry weight (g) by fresh sample volume 

(cm3) (Chambers et al. 2011). The remainder of each 

soil sample was divided into two parts. One part was 

used in fresh (moist) condition to determine degree 

of decomposition by the half-syringe (fibre volume) 

method of Lynn et al. (1974), as well as secondary 

transformation of the soil horizons in terms of the 

water holding capacity index W1 proposed by Gawlik 

(2000). The other part of the sample was dried at 

105 °C then crushed in a mortar until it was 

homogeneous, and living plant remains were 

removed meticulously. The dried material was used 

to determine pH potentiometrically in a 1:2.5 

soil:water solution (Kabala et al. 2016), total organic 

carbon (TOC) and total nitrogen (TN) content by 

catalytic dry combustion using a CNS VarioMax 

analyser, and the contents of hot water extractable 

carbon (HWC) (Sparling et al. 1998) and cold water 

extractable carbon (CWC) (Landgraf et al. 2006) 

using a Ströhlein CS-MAT 5500 analyser (after 

filtration via Whatman 0.45 membrane filters). 
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Figure 3. Weather conditions (temperature and precipitation) and water table level during the study period. 

Monthly precipitation amounts and mean monthly temperature were obtained from meteorological stations 

at Słoszów and Kudowa Zdrój, respectively. 

 

 

 

Water 

Water samples were filtered via Whatman 0.45 μm 

membrane filters within a day of collection. After 

filtration the absorbance at 400 nm (Abs400) was 

measured in the laboratory using an Agilent Cary 60 

UV-Vis Spectrophotometer (Wallage et al. 2006). 

Water samples for dissolved organic carbon (DOC) 

measurements were placed in 50 ml glass bottles and 

acidified with 150 μL of concentrated HCl to remove 

carbonates. The samples prepared in this way were 

stored in a refrigerator at 5 °C until analysis using a 

Ströhlein CS-MAT 5500 analyser with infrared 

detection of the evolving CO2. Additionally, the 

following standard elemental composition of water 

was measured: concentrations of calcium (Ca2+) and 

magnesium (Mg2+) ions by atomic absorption 

spectrophotometry (AAS) after adding lanthanum to 

reduce anionic interference; and bicarbonate (HCO3
-) 

content by titration with hydrochloric acid. 

Basic statistical analysis (Pearson correlation 

coefficient) of the results was done using Statistica 

12 software (StatSoft Inc., Tulsa, OK, USA). 

RESULTS 

 

Meteorological data, water table level and water 

chemistry 

Mean growing season temperatures and precipitation 

sums for individual years of the study period were as 

follows: 10.1 °C and 616 mm in 2010, 11.1 °C and 

468 mm in 2011, 11.1 °C and 474 mm in 2012, 

10.1 °C and 498 mm in 2013, 11.4 °C and 473 mm in 

2014, 10.1 °C and 372 mm in 2015. The wettest 

seasons were summers (June–August), while springs 

(March–May) were the driest, except in the year 2014 

when the rainfall total for spring slightly exceeded 

the precipitation sums for summer and autumn 

(Figure 3). 

Ditch blocking and reduction of 

evapotranspiration led to an increase in the mean 

growing season water table level during the five years 

of observations. A rise in water table level of up to 

~ 40 cm was observed at Plots 1 and 3 in the second 

year following restoration (2012). The water table at 

Plot 2 was very close to the ground surface even 
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before restoration treatments, and by the end of the 

study period (in August–October 2015), surface 

water was present at all of the plots (Figure 3). 

pH and EC values had increased very slightly by 

the fifth year following restoration (Table 1). The 

water pH along transects increased from the margin 

towards the centre of the peatland. Bicarbonate, 

calcium and magnesium concentrations in peat water 

along the research transects were in the ranges:    

157–179 mg L-1, 53.2–60.7 mg L-1 and 2–3 mg L-1, 

respectively, in 2010. The amounts of these elements 

were similar in 2015, and there was no noticeable 

trend. DOC concentrations in peat water were also 

similar in the years 2010 and 2015 (Figure 4). The 

same situation was observed in the case of water 

discolouration as defined by the Abs400 indicator; the 

average values ranged from 13.3 au m-1 in 2010 to 

15.0 au m-1 in 2015 (Figure 4). 

 

Soil morphology, classification and properties 

Prior to restoration, the total thickness of peat varied 

amongst the sampling plots, within the range           

54–80 cm. In 2015 an increase in peat thickness of up 

to 10 cm was recorded at Plot 3 (Table A1 in 

Appendix). These shallow organic soils consisted 

mostly of strongly decomposed sapric peat (less than 

10 % undecomposed fibre) overlying the sandstone-

siltstone bedrock. According to the FAO-WRB 

classification (IUSS Working Group WRB 2015), 

they belonged to the soil reference group Histosols, 

additionally described by various principal and 

supplementary   qualifiers   (see  Table   A1).   In   the 

 

 

 

Table 1. Selected chemical properties of peat water (mean values and standard deviation). 

 

Plot 

pH EC (µs cm-1) HCO3
- (mg L-1) Ca2+ Mg2+ 

2010 2015 2010 2015 2010 2015 2010 2015 2010 2015 

1 
7.01 

±0.04 

7.14 

±0.01 

318 

±2.00 

323 

±0.58 

179 

±3.51 

170 

±8.89 

60.7 

±2.07 

59.8 

±3.94 

3.22 

±0.33 

3.16 

±0.33 

2 
7.22 

±0.07 

7.23 

±0.08 

304 

±2.89 

310 

±2.65 

170 

±2.08 

171 

±7.02 

57.3 

±1.80 

58.0 

±1.86 

2.73 

±0.12 

2.78 

±0.23 

3 
7.10 

±0.02 

7.16 

±0.06 

302 

±2.65 

306 

±2.65 

157 

±3.61 

159 

±7.00 

53.2 

±3.13 

54.8 

±2.79 

2.09 

±0.10 

2.59 

±0.54 

 

 

 

 
 

Figure 4. Average and standard deviation of DOC concentration (left-hand diagram) and absorbance (Abs) 

at 400 nm (right-hand diagram) in water. Comparison of data collected in 2010 and 2015. 
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uppermost 20 cm of the soil profiles at Plots 1 and 3 

a granular or weakly granular structure (peaty mursh) 

was observed. Five years after restoration the 

aggregate structure of this horizon at Plot 3 was 

looser, as a result of rewetting and disintegration of 

the aggregates. 

The range of bulk density (BD) values recorded 

was 0.14–0.54 g cm-3 (Table A2). Values determined 

before and five years after restoration were very 

similar except in the bottom horizons (Ha4 at Plot 1; 

Ha5 at Plots 2 and 3), where lower BD values were 

recorded in 2015 (Table A2). The water-holding 

capacity index (W1) values showed large differences 

between different soil horizons in both 2010 and 

2015 (Table A2, Figure 5). The highest W1 index 

values were recorded in the uppermost (mursh) 

horizons at Plots 1 and 3 in both of these years. 

However, the W1 index values (indicating degree of 

secondary transformation) generally increased over 

the five years. Some soil horizons (e.g. Ha2 and Ha3 

at Plot 2) were assigned to Class 0 (none) in 2010 and 

showed initial or weak secondary transformation in 

2015. The only reversal occurred in Horizon Ha2 at 

Plot 3, where the W1 value decreased and the 

secondary transformation class changed from weak 

(in 2010) to initial (in 2015). 

The peat was moderately to slightly acidic, with 

pH in the range 5.6–6.2 in both years of sampling. 

The range of TOC content was 125–426 g kg-1 in 

2010 and 170–437 g kg-1 in 2015, while TN ranged 

from 5.50 to 30.2 g kg-1 (Table A3). TOC/TN was 

lowest (13.5–17.9) in the surface soil horizons and 

increased with depth. The content of potentially 

labile forms of soil organic carbon (HWC) ranged 

from 0.80 to 3.39 g kg–1 in 2010 and from 0.73 to 

3.51 g kg–1 in 2015 (Table A3). The highest HWC 

concentrations were found in the surface soil 

horizons, and the lowest in horizons directly 

overlying the mineral bedrock (Table A3). Statistical 

 
 

Figure 5. Secondary transformation stages of the 

studied soil horizons - percentage contribution 

(2010 and 2015 comparison). 

 

 

analysis of the entire dataset for all soil horizons 

showed a significant positive correlation between 

HWC and the W1 index (at p = 0.05, r = 0.443) and a 

significant negative correlation between TOC/TN and 

HWC (at p = 0.05, r = 0.657) (Table 2). CWC was 

decidedly lower than HWC, at 0.18–1.04 g kg–1 in 

2010 and 0.23–1.22 g kg–1 in 2015. The highest 

variability of CWC was recorded at Plot 2 (Table A3). 

This soil property was significantly negatively 

correlated with BD (at p = 0.05, r = -0.451) (Table 2). 

 

 

 

Table 2. Pearson coefficients of correlations between selected soil properties (n = 70). Key: BD = bulk density; 

* = significant at p = 0.05. 

 BD W1 HWC CWC TOC/TN 

BD  0.123 -0.191 -0.451* 0.265 

W1 0.123  0.443* -0.188 -0.219 

HWC -0.191 0.443*  0.502* -0.657* 

CWC -0.451* -0.188 0.502*  -0.362* 

TOC/TN 0.265 -0.219 -0.657* -0.362*  
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DISCUSSION 

 

Effects of restoration on water quality 

Hydrology is considered to be the most important 

factor affecting the proper functioning of peatland 

ecosystems (Rydin & Jeglum 2006, Waddington 

2008). Moreover, change in water quality is one of 

the earliest noticeable effects of both degradation 

(Kalisz et al. 2015) and recovery (Haapalehto et al. 

2011) of peatlands. A key indicator of changes is the 

concentration of labile carbon (DOC) in peat water 

(Koskinen et al. 2017), which results from 

destabilisation of the carbon stored in peat soils 

(Freeman et al. 2001). We hypothesised that a five-

year restoration period should lead to a positive effect 

on both water table level and water quality. 

Favourable effects of restoration were observed only 

in relation to water table level, which was already 

very close to the ground surface (0.10–0.15 m below 

ground level) in the second year of recovery (2012). 

This is one of the most predictable consequences of 

peatland restoration (Wilson et al. 2011, Bogacz et 

al. 2012) and a good indication that hydrological 

restoration has been successful (Holden et al. 2011). 

A similar effect of restoration - a quick rise of the 

water table to almost ground level - has been reported 

in previously afforested fens in the USA (Haapalehto 

et al. 2011), Finland (Laine et al. 2011) and Poland 

(Nicia et al. 2017). Damming ditches and removing 

spruce trees definitely improved the hydrological 

conditions, although this was not the only 

determinant. In sloping fen peatlands fed mainly by 

seepage of groundwater, water table level can be 

strongly influenced at great distances beyond a ditch, 

as a result of the lateral flows of water during the 

whole season (Schimelpfenig et al. 2014). Despite 

the gradual decline in mean annual precipitation 

(Figure 3) during the study period, the water table 

rose due to the sustained inflow of groundwater from 

springs. A stable water table level indicates a low 

dependency on precipitation (McCarter & Price 

2013). 

Measured DOC concentrations in both years of 

observations were within the typical range for 

drained peatlands (10–60 mg L-1) defined by 

Thurman (1985). Labile carbon concentrations in 

water, as well as water colour (Abs400), were similar 

in both years of observation. Our findings are in line 

with those of Armstrong et al. (2010) and Wilson et 

al. (2011), who reported no change or a small 

decrease in DOC concentrations three years after 

ditch blocking. A similar restoration outcome has 

been observed in upland mires in the UK (Clark et al. 

2008). However, this is contrary to the results of 

Kaila et al. (2016) and Koskinen et al. (2017) who 

found increased DOC concentrations in water 1–4 

years after restoration of forestry-drained 

minerotrophic peatlands. Therefore, we can advocate 

ditch-blocking and clearcutting of trees to improve 

hydrological conditions. However, the impact on 

water quality will be different at every site, as a result 

of various controlling mechanisms (Clark et al. 2008) 

such as catchment characteristics (Bess et al. 2014, 

Wolf & Cooper 2015). 

 

Effects of restoration on soil 

Changes in water table level both prior to and after 

restoration affected the morphology and properties of 

the studied soils. Compaction of organic soils due to 

dewatering is well recognised in degraded peatland 

(e.g. Laiho & Pearson 2016), while in rewetted areas 

an increase in soil thickness (and surface altitude) 

associated with decreasing bulk density (BD) has 

often been reported (e.g. Anderson & Peace 2017). 

This is in line with our findings. The reduction in BD 

values observed in the bottom organic soil horizons 

can be associated with the expansion of peat material 

that led to the observed increase in thickness of the 

peat layer, which ranged from 2 cm at Plot 1 to 10 cm 

at Plot 3. We are aware that these results, based on 

discrete peat thickness measurements five years 

apart, may be slightly inaccurate. According to Parry 

et al. (2014b), a more robust approach would involve 

either manual probing or the installation of long rods 

anchored in the mineral material beneath the peat; 

however, such methods could also provide imprecise 

results. Because we took three replicate cores, we 

believe that our results are relatively reliable. 

Schmidt (1995) has reported rising of a fen peatland 

surface as an outcome of restoration after only two 

years of recovery. 

The changes in structure of the surface soil 

horizon at Plot 3 were connected with rewetting and 

disintegration of aggregates. The consequence was 

finer structure in this layer. Thus, we assume that the 

weak aggregate structure in weakly murshified 

material may slightly lose its size and granular shape 

when subjected to permanent saturation. This 

assumption is supported by the reduction in W1 index 

observed between 2010 and 2015 (Table A2). The 

changes in these soil physical properties indicate a 

positive effect of short-term restoration. However, 

our results are somewhat surprising when compared 

to those from other studies of sloping peatland 

restoration. For instance, Anderson & Peace (2017) 

observed a decrease in bulk density only after an 

interval of ten years had elapsed since restoration. 

Schimelpfenig et al. (2014) found that even 20 years 
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was not a sufficient time period for recovery of soil 

properties, which they suggested may never be 

restored so that, instead, a new peat layer must form 

over the degraded peat. 

The halting of carbon losses and re-establishment 

of carbon sequestration are some of the most 

frequently expected outcomes of peatland restoration 

(Strack et al. 2008, Poulin et al. 2012, Chimner et al. 

2016). However, we found that the trend towards 

degradation caused by long-term forestry was not 

reversed in relation to organic matter transformation 

expressed as labile carbon forms content, TOC/TN 

values or the secondary transformation index W1. 

Our observations have revealed that five years is 

insufficient time to restore these soil properties. The 

increased amount of labile carbon, especially the 

easily mineralisable CWC form, indicates that a 

substantial part of the soil carbon is still susceptible 

to efflux through fluvial pathways (Worrall et al. 

2007). Moreover, the increase of HWC in the surface 

mursh horizons (in particular) might suggest an 

increase in microbial activity (Sparling et al. 1998) 

confirming ongoing mursh formation (Kalisz et al. 

2015). Further transformation of organic matter is 

additionally confirmed by the lowered TOC/TN and 

increased W1 (secondary transformation) values. 

Both of these indices are closely connected with the 

mursh-forming process which is typical for degraded 

organic soils (Kalisz et al. 2015, Glina et al. 2016a). 

In our study soils, surface mursh horizons were 

observed at Plots 1 and 3 (Table A1). Raising the 

water table did not result in a reduction of dissolved 

organic carbon in the soil or, thus, in the associated 

water. Discussion of this phenomenon is hampered 

by the lack of information about effects of restoration 

on sloping mountain fen soils. Available data chiefly 

relate to the magnitude of fluvial DOC export before 

and after restoration (e.g. Strack & Zuback 2012, 

Schimelpfenig et al. 2014, Kaila et al. 2016, 

Koskinen et al. 2017). However, in the lysimeter 

study presented by Schwalm & Zeitz (2015) it was 

found that raising the water table was not sufficient 

to reduce DOC in fen soils, and the crucial factors 

influencing DOC release were the degree of peat 

decomposition and soil pH. Such interesting findings 

should be taken into account when planning 

restoration of fen peatlands. 

 

Effects of restoration on vegetation 

Changes in vegetation structure due to forestry 

drainage progress more rapidly on fens than on bogs 

(Komulainen 1999). Dense tree stands cause shading 

and enhance the effects of drainage, so mechanical 

removal of trees and shrubs is recommended as best 

practice for restoration (Schumann & Joosten 2008). 

This also creates better conditions for growth and 

development of plant species with low competitive 

strength (Ryś 2011). To restore rich fen peatlands, it 

may sometimes be advantageous to apply various 

types of strategies to recreate conditions that 

facilitate establishment of the desired species 

(Mälson et al. 2009). 

Positive feedback in terms of development of the 

desired vegetation within the studied fen proves that 

the methods used are sufficient to raise the water 

table and limit nutrient pools. In the first years after 

restoration, spontaneous recolonisation by sedges 

(e.g. Carex paniculata, Carex flava) and horsetails 

(e.g. Equisetum limosum, Equisetum fluviatile), 

which are typical vascular plants for fens (Rydin & 

Jeglum 2006), was observed. Another good indicator 

of improved hydrological conditions was the 

appearance of Veratrum lobelianum (Melanthiaceae). 

This genus prefers full sunlight and wet soils (Mirek 

et al. 1995). Another important species which 

returned to the studied peatland is the grey alder 

Alnus incana, a typical tree species for poor to rich 

mountain fen peatlands (Edvardsson et al. 2016) 

which is common in western and central Europe 

(Lang 1952). Palaeoecological research has shown 

that the immediate vicinity of the study peatland was 

covered by riparian forest dominated by Alnus from 

ca. 3320 BP to 650 BP. Moreover, the results of 

macrofossil analysis have demonstrated that, while 

the uppermost parts of the peat profile of the study 

site are composed of Carex and Equisetum remains, 

the soil layer below 50 cm depth contains Alnus wood 

and bark. This confirms that Alnus stands formerly 

occurred actually on the study site (Glina et al. 2017). 

The positive outcome of our restoration project 

after five years is the natural recolonisation by peat-

forming plants which were important components of 

the habitat until spruce monocultures were 

introduced by humans almost 120 years ago (Glina et 

al. 2017). This probably stems from peatland 

rewetting and the presence of viable seed and spores 

in the soil. In other studies on mountain fens (e.g. 

Mälson et al. 2009, Haapalehto et al. 2011, Laine et 

al. 2011), authors have noted that timespans of 3–10 

years are needed for peatland flora to respond to 

restoration. Our short-term (5-year) observations of 

flora gave quite similar but somewhat faster 

outcomes, in that initial changes were already 

observable 1–2 years after restoration. The 

complexity of hydrological patterns and processes 

within fen peatlands means that all restoration 

outcomes may not be visible within the same time 

frame, and this account of short-term effects in a 

mountain fen brings new findings to the current state 

of knowledge. 
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Appendix 
 

 

Table A1. Morphology and classification of the soil profiles at the three sampling plots. For ‘Structure’: 

A = amorphous, GR = granular, L = lumpy, F = fibrous, W = weak. For ‘Horizon boundary’: G = gradual, 

C = clear, W = wavy. 

 

Soil 

horizon 

Depth (cm) Colour 

(moist) 

Structure Horizon 

boundary 

Wood 

fragments 

Material 

type 2010 2015 2010 2015 

Plot 1 - Eutric Rheic Sapric Murshic Histosol (Lignic) 

Ha1 0–12 0–12 10YR 2/1 GR GR G - mursh 

Ha2 12–25 12–25 10YR 2/2 GR W-GR CW - mursh 

Ha3 25–40 25–40 10YR 3/4 A-L A-L G + sapric peat 

Ha4 40–54 40–56 10YR 3/3 A-L A-L G + sapric peat 

Plot 2 - Eutric Rheic Sapric Drainic Histosol (Lignic) 

He 0–7 0–7 10YR 2/1 A-F A-F G - hemic peat 

Ha1 7–22 7–22 10YR 3/1 A A G - sapric peat 

Ha2 22–37 22–37 10YR 3/2 A-L A-L G + sapric peat 

Ha3 37–55 37–55 10YR 3/2 A-L A-L CW + sapric peat 

Ha4 55–70 55–70 10YR 3/3 A A G - sapric peat 

Ha5 70–80 70–85 10YR 4/3 A A G - sapric peat 

Plot 3 - Eutric Rheic Sapric Murshic Histosol (Lignic) 

Ha1 0–10 0–10 10YR 2/1 GR GR G - mursh 

Ha2 10–20 10–20 10YR 2/1 W-GR GR-A CW - mursh 

Ha3 20–35 20–35 10YR 3/2 A-L A-L G + sapric peat 

Ha4 35–50 35–50 10YR 4/4 A-L A-L G + sapric peat 

Ha5 50–80 50–90 7.5YR 4/4 A-L A-L G + sapric peat 

 

 

Table A2. Soil physical and physicochemical properties (mean values) of soil horizons. 

 

Plot 
Soil 

horizon 

Bulk density (g cm-3) Fibre content (%) Index W1 pH H2O 

2010 2015 2010 2015 2010 2015 2010 2015 

1 

Ha1 0.22 0.21 - - 0.62 0.69 5.8 5.9 

Ha2 0.21 0.20 - - 0.47 0.50 5.7 5.7 

Ha3 0.25 0.25 5 5 0.57 0.60 5.7 5.6 

Ha4 0.54 0.34 4 4 0.47 0.43 6.0 5.9 

2 

He 0.16 0.16 10 9 0.45 0.48 6.2 6.1 

Ha1 0.17 0.16 9 7 0.39 0.59 5.8 5.9 

Ha2 0.16 0.15 6 6 0.31 0.45 5.9 5.7 

Ha3 0.17 0.14 6 6 0.32 0.48 5.8 5.7 

Ha4 0.17 0.14 5 6 0.36 0.46 6.0 6.1 

Ha5 0.24 0.17 6 6 0.45 0.46 5.8 5.9 

3 

Ha1 0.22 0.20 - - 0.62 0.64 6.0 6.0 

Ha2 0.20 0.18 - - 0.49 0.45 5.8 5.8 

Ha3 0.17 0.17 4 5 0.42 0.56 5.7 5.6 

Ha4 0.14 0.16 5 5 0.41 0.55 5.8 5.8 

Ha5 0.26 0.19 8 7 0.49 0.49 5.9 5.8 
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Table A3. Soil chemical properties (mean values). 

 

Plot 
Soil 

horizon 

TOC (g kg-1) TN (g kg-1) TOC/TN HWC (g kg-1) CWC (g kg-1) 

2010 2015 2010 2015 2010 2015 2010 2015 2010 2015 

1 

M1 346 358 19.3 23.8 17.9 15.0 2.39 2.51 0.43 0.39 

M2 315 338 18.2 22.8 17.3 14.8 1.78 1.97 0.41 0.40 

Ha1 232 290 11.6 16.5 20.0 17.6 1.32 1.44 0.18 0.23 

Ha2 125 170 5.50 9.10 22.7 18.7 0.88 0.92 0.22 0.40 

2 

He 401 394 28.7 26.5 14.0 14.9 2.64 2.82 1.02 1.22 

Ha1 404 407 26.9 30.2 15.0 13.5 2.15 2.13 1.04 1.21 

Ha2 418 422 24.4 28.6 17.1 14.8 1.65 1.77 0.85 0.84 

Ha3 397 435 18.9 25.7 21.0 16.9 1.52 1.58 0.81 0.84 

Ha4 408 437 20.6 19.1 19.8 22.9 0.98 1.04 0.52 0.57 

Ha5 336 398 13.0 15.5 25.8 25.7 1.12 1.17 0.56 0.57 

3 

M1 399 392 27.1 26.9 14.7 14.6 3.39 3.51 0.66 0.64 

H/M 395 410 26.7 24.7 14.8 16.6 1.38 1.91 0.41 0.54 

Ha1 405 420 26.6 21.4 15.2 19.6 0.80 1.08 0.20 0.37 

Ha2 426 431 23.4 19.9 18.2 21.7 1.04 0.73 0.25 0.59 

Ha3 335 316 15.8 13.1 21.2 24.2 1.01 1.06 0.23 0.47 

 


