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_______________________________________________________________________________________ 

 

SUMMARY 

 

There is widespread interest in estimating annual carbon dioxide (CO2) and methane (CH4) budgets for 

peatlands using data collected from flux chambers. Flux-chamber measurements are a snapshot of the 

conditions on a particular site and may not adequately represent fluxes between measurements. However, these 

measurements can be used in simple models to estimate time-integrated fluxes of CO2 and CH4. This paper 

reviews modelling approaches used for estimating such time-integrated fluxes and provides what we hope is a 

‘one-stop-shop’ for new researchers, such as PhD students, considering using such models. The review is 

written for those with a non-mathematical background. 
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_______________________________________________________________________________________ 

 

INTRODUCTION 

 

Peatlands are important global carbon (C) stores (e.g. 

Yu 2011), and there is widespread interest among 

peatland scientists in estimating peatland-atmosphere 

fluxes of the C gases carbon dioxide (CO2) and 

methane (CH4), and in budgeting for these gases on 

an annual timescale (see, e.g., Olson et al. (2013) and 

Meng et al. (2016) who edited a special issue on the 

topic in the journal Environmental Research Letters). 

Such budgeting is relatively straightforward when 

fluxes are estimated using flux tower methods, such 

as eddy covariance, because measurements are made 

continuously throughout a year (e.g. Levy & Gray 

2015). Flux tower methods tend to apply to 

reasonably large spatial scales, typically linear scales 

of several tens of metres or more. While useful for 

estimating whole-peatland C budgets, these methods 

are less useful for revealing controls on C budgets at 

smaller spatial scales. For example, there is interest 

in how different peatland microhabitats, such as 

pools, hollows, lawns, and hummocks/ridges (Belyea 

& Clymo 2001, Laine et al. 2006), compare in terms 

of CO2 and CH4 uptake and release and what controls 

smaller-scale variability in C fluxes (Laine et al. 

2006). At these smaller scales, flux chambers are 

usually used to measure fluxes (see Alm et al. (2007) 

and Denmead (2008) for details). Flux chamber 

measurements are typically made weekly or 

fortnightly, although higher frequencies are 

sometimes used (Waddington & Roulet 1996, 

Dinsmore et al. 2010; Baird et al. 2010; Moore et al. 

2011; Dooling et al. 2018). Flux-chamber 

measurements represent a snapshot of the conditions 

on a particular site. Net CO2 exchanges, for example, 

vary over time with solar irradiance and other 

environmental variables (e.g. soil temperature and 

water table). Therefore, a chamber measurement of 

CO2 flux at a particular time of day will typically be 

a poor reflection of net CO2 exchange at other times 

on that day or of the period until the next chamber 

measurement. To estimate fluxes and net exchanges 

for the hours and days between measurements, it is 

necessary to use models that relate net CO2 exchange 

(net ecosystem exchange – NEE – see next section), 

or its components, to solar irradiance and 

environmental variables, such as soil temperature, 

water-table position, and vegetation composition and 

vigour. It is also necessary for these other supporting 

variables to be measured at a high frequency 

throughout the year, so that the flux model can also 

be applied across the year to provide an annual 

estimate of CO2 exchanges. 

This paper arose through a realisation that there is 

no 'go-to' review in which different flux models are 

described and explained and their relative merits 

discussed. From discussions with first-year PhD 

students, we also became aware that a review that 

assumed only a basic mathematical background (up 

to basic calculus) on the part of the reader would be 

very welcome. Therefore, in the review that follows, 

it has been assumed that readers have a maths 
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background typical of that of a competent 16-year 

old, with familiarity of basic mathematical operations 

and concepts including exponentiation and 

logarithms. We have further assumed that readers 

have been taught introductory statistics at university, 

including regression and model fitting. In writing the 

paper, we were aware of the dangers of trying to 

consider all, or most, of the papers in which C flux 

models have been applied to peatlands. Although 

there is merit in undertaking a systematic review of 

peatland C-flux studies, we were keen to keep the 

original purpose of the paper in sight. Thus, we have 

not tried to provide a comprehensive list of papers in 

which particular models have been used; rather, our 

aim has been to describe and discuss the main models 

in use and to cite examples of studies that have used 

these models. We hope authors of papers that we 

have not cited forgive us. 

 

 

MODELLING CO2 EXCHANGE 

Net ecosystem exchange (NEE) 

Net ecosystem exchange (NEE) – defined as the net 

CO2 exchange between a peatland and the 

atmosphere – can be divided into two components: 

gross photosynthesis, PG (M L-2 T-1 or mass of CO2 

per unit area per unit time)1, and ecosystem 

respiration, RT (dimensions and units as for PG). NEE 

is given by 

 

TG RPNEE +=       [1] 

 

so that 

 

TG RNEEP −=      [2] 

 

In Equations [1] and [2], PG is negative (indicating 

uptake by the peatland) and RT positive (indicating 

release from the peatland). Therefore, NEE will be 

negative (net uptake) when the absolute magnitude of 

PG exceeds that of RT. PG is defined as the rate of total 

CO2 uptake during light conditions by 

photosynthesising organisms and is sometimes called 

the 'real' or 'true' photosynthesis (Mohr & Schopfer 

1995). RT is the sum of all respiration taking place in 

the system and comprises decomposition processes in 

                                            
1 All physical quantities can be expressed in terms of their fundamental dimensions, where M is mass, L is length, T is time,  is 

absolute temperature, and N is amount (countable units). These symbols should always be presented in normal case, not italics, and 

not bold. Each dimension may have different units. L, for example, may be given in m or cm. 

2 An asymptote is the straight line to which some functions approach but never reach. For example, the exponential function  

y = e-a  x (or y = 1/(ea  x)), where e is base of the natural logarithm (or Euler's (pronounced 'oil-er') number) (2.71828...) and a is a 

constant, has as its asymptote y = 0; i.e., as x increases, the value of the function gets closer to, but never reaches, 0. 

3 Irradiance may also be expressed as a photon flux density (PFD), with units of mol m-2 s-1 and dimensions of N L-2 T-1. PPFD is the 

photosynthetic photon flux density and is equivalent to PAR (photosynthetically active radiation). 

the soil (heterotrophic respiration) and root, shoot, 

and leaf respiration (autotrophic respiration). If a flux 

chamber contains all of the vegetation canopy, RT 

may be estimated using data from a dark test (one 

where the flux chamber is shrouded and all I 

excluded), while NEE is measured in a light chamber 

test. Different authors use different terms to describe 

the same thing and it is worth being aware that PG is 

also denoted GP or called gross primary 

production/productivity (GPP), while RT is also often 

denoted using Reco, ER and ER. 

 

Modelling gross photosynthesis (PG) 

In most papers, NEE is modelled by considering PG 

and RT separately. PG is almost always described 

using a model of the following form: 

 

Ik

IQ
PG

+


=       [3] 

 

or 
 

nG XXX
Ik

IQ
P 

+


= ...21

    [4] 

 

The quotient on the right-hand side of Equation [3] 

produces a rectangular hyperbola as shown in Figure 

1 and is of the same form as the well-known 

Michaelis-Menten curve used to describe enzyme 

kinetics (Johnson & Goody 2011). In Equation [3], Q 

may be thought of as an asymptotic limit2 of PG, I is 

irradiance (W m-2 – dimensions of M T-3)3, and k is 

the so-called half saturation constant (units as for 

irradiance) and affects the shape of the relationship 

between PG and I (the rate at which the curve 

approaches its asymptote). Q is also commonly 

referred to as GPmax (theoretical maximum gross 

photosynthesis). Equation [3] has been extended by 

many authors by adding factors to the right of the 

quotient (i.e. X1, X2, … , Xn) (Equation [4]). These 

factors are environmental variables, such as the cover 

of different plant types (see EXAMPLE MODEL 

APPLICATIONS below), water-table depth, and air 

or soil temperature. The introduction of these means 

that Q alone, no longer defines the asymptotic limit 

of PG. 

Equation  [3]  has  been  widely  used  in  peatland  
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Figure 1. Example response of gross 

photosynthesis (PG) to changes in solar irradiance. 

The curve shown is based loosely on data (July to 

August) reported in Tuittila et al. (1999) for an 

Eriophorum vaginatum L. tussock in a restored 

bog in southern Finland (their Figure 4a). IPAR is 

photosynthetically active irradiance (see Equation 

[5]). Note that for the purposes of plotting, PG has 

been given as positive values. 

 

 

studies and is a two-parameter model – the 

parameters being Q and k – and can be fitted to data 

using a form of non-linear regression (e.g. Tuittila et 

al. 1999, Samaritani et al. 2011). Model error may be 

estimated as the sum of the squared differences 

between the modelled and observed PG values (see 

EXAMPLE MODEL APPLICATIONS below). 

This sum may be minimised by altering the values of 

Q and k using a numerical optimisation tool such as 

Solver, which is available as a Microsoft Excel add 

on. Non-linear regression can be carried out in most 

statistical packages, including R (e.g. the 

'nls.multstart' R package written by Padfield & 

Matheson (2018)). 

Equation [3] comes in a range of guises. A version 

that is widely used among North American and 

European research groups working on a range of 

peatlands and organic (tundra) soils (e.g. Whiting et 

al. 1992, Whiting 1994, Waddington & Roulet 1996, 

Bellisario et al. 1998, Bubier et al. 1999, Drösler 

2005, Veenendaal et al. 2007, Elsgaard et al. 2012, 

Beetz et al. 2013, Hoffmann et al. 2015, Vanselow-

Algan et al. 2015) is 
 

( ) QIa

IaQ
P

PAR

PAR
G

+


=      [5] 

 

where IPAR is photosynthetically-active radiation and 

a is the initial slope between PG and IPAR. Equation 

[5] is missing the environmental factors (X1, X2, … , 

Xn) to the right of the quotient seen in Equation [4], 

and the quotient itself looks superficially somewhat 

different from that in Equation [3]. However, the 

right-hand side of [5] yields the quotient in [3] if the 

numerator and denominator are divided by a, to give 

 

PAR

PAR

PAR

PAR

Ik

IQ

a
Q

I

IQ

+




+


, where 

a

Q
k = . 

 
The origin of the rectangular hyperbola as a model 

for PG for a vegetation canopy is unclear. Whiting et 

al. (1992) may have been the first to use it in the form 

given here, but Whiting (1994) suggests the model is 

based on Hilbert et al. (1987). Ultimately, the model 

is derived from the empirical, non-rectangular 

hyperbola model of leaf photosynthesis (e.g. 

Thornley 1998); it is a special case and simplification 

of that model. 

Many plants and vegetation types conform 

reasonably well to the relationship given in Equation 

[3] (or its equivalent – Equation [5]). However, the 

equation may not always be appropriate. Photo-

inhibition has been observed in Sphagna and may 

cause the relationship between PG and irradiance to 

vary over time and to depart from a rectangular 

hyperbola. For example, Murray et al. (1993) 

investigated photo-inhibition in Sphagna in both field 

and laboratory experiments; Sphagnum plants 

exposed to high-light conditions, even for short 

periods of time (48 hours), showed reduced 

photosynthetic capacity for periods of at least two 

weeks thereafter. Hájek et al. (2009) also studied 

photo-inhibition in a range of Sphagna growing 

under different circumstances and found that photo-

inhibition could explain the lower photosynthetic 

capacity of Sphagna growing in full-light (open mire) 

compared to the shade under shrubs and trees. Hájek 

et al. (2009) assumed that Equation [3] (or Equation 

[5]) is appropriate for describing PG vs I, but did not 

consider temporal changes in the relationship in the 

same way as Murray et al. (1993). It is possible that, 

for sites that have a high cover of Sphagnum, 

Equation [3] (Equation [5]) will not apply in a simple 

manner over the course of a growing season. It is 

possible too that the parameters in Equation [3] 

(Equation [5]) may change for other plant types, such 

as Eriophorum spp. depending on the growth phase 

through the summer. Bellisario et al. (1998), for 

example, found that a (Equation [5]) generally 

declined during the growing season at their sites, 

which ranged from a low-shrub rich fen to permafrost 

collapse bog. To account for seasonal changes in a 

and Q, recent studies have applied Equation [5] on a 

campaign basis where multiple chamber 

measurements have been carried out on each day. For 
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example, Beetz et al. (2013) conducted up to 72 light 

chamber tests and 42 dark chamber tests per 

measurement day across three locations, allowing a 

PG model to be developed for each day. From this 

group of models, parameters were linearly 

interpolated between measurement campaigns and 

fluxes calculated on an hourly basis from continuous 

environmental data (see INTRODUCTION). 

Although it would be desirable to conduct multiple 

measurements per chamber location per day, the 

logistical demands of doing so are considerable and 

Equation [5] (Equation [3]) is usually applied to 

datasets comprising data from chamber tests taken 

over several seasons or even several years. Despite 

the problem of possible changes in parameter values 

across a year, there does not seem to be an obvious 

simple alternative to Equation [3] (Equation [5]) 

when the approach adopted by Beetz et al. (2013) is 

not feasible. Therefore, we suggest using the 

equation as a first 'port of call' and then assessing its 

suitability (see EXAMPLE MODEL 

APPLICATIONS below). In addition, a number of 

research groups have introduced a factor to the model 

that captures phenological changes in vegetation over 

the season and this is discussed below. 

Bubier et al. (1999) note that the relationship 

between PG and I may change during a season and 

suggest it can be accounted for by adding a 

phenological or seasonality factor to the rectangular 

hyperbola model (i.e. one of the X factors in Equation 

[4]). The factor is given by Tm/Ts where the numerator 

is the seven-day running mean of the soil temperature 

at a depth of 5 cm, while the denominator is the 

seasonal average soil temperature at the same depth. 

Bubier et al. (1999) suggest this expression can take 

values only from 0 to 1, although this seems to be 

incorrect, because the seven-day running mean must 

sometimes exceed the seasonal average to give 

values greater than 1. However, it's clear that the 

value of the expression will rise and fall through the 

season representing the increase and subsequent 

decrease in photosynthetic activity as new leaves 

form, as the plants reach maximal green leaf area, and 

as the leaves senesce towards the end of summer. A 

similar approach has been adopted by Alm et al. 

(1997) and Tuittila et al. (1999) who used a factor 

called the effective temperature sum index or ETI. 

ETI is the ratio of the cumulative temperature sum to 

the number of temperature sum days. 

Mathematically, the ETI is given by 
 

jTETI
j

i

i,airj 







=
=1

     [6] 

 

where j is the day of interest (counted from the first 

day when the five-day moving average air 

temperature exceeds a threshold temperature), airT is 

daily-average air temperature (C) and i is day 

number. Tuittila et al. (1999) note that a threshold 

temperature has to be reached before the ETI is 

calculated, and estimated ETI only for that part of the 

year (for a site in southern Finland) when the five-

day moving average air temperature was over 5 C. 

The assumption of such a threshold is that plants 

senesce or become dormant below it and do not 

photosynthesise. 

As an alternative to the temperature-based 

approach of Bubier et al. (1999) and Tuittila et al. 

(1999), vegetation metrics can be introduced as a 

factor in a modified form of Equation [3] (Equation 

[5]) to account for seasonality in the relationship 

between PG and I. For example, the foliar (above-

ground) biomass of vascular plants (fb) was used by 

Burrows et al. (2005), as follows: 

 

( ) ( )bPAR

PARb
G

fbIa

Iafb
P

+


=     [7] 

 

where b is a parameter and b  fb is substituted for Q 

(Equation [5]). Somewhat similarly, Görres et al. 

(2014) used a ratio vegetation index (RVI) to provide 

a measure of actively-growing green biomass and 

included it in the same way fb is included in Equation 

[7]. The inclusion of RVI in the PG model generally 

improved the model fit, compared with using only the 

light response model (Equation [5]). However, 

annual estimates were not significantly altered with 

the inclusion of RVI due to the high uncertainties of 

the models (Görres et al. 2014). Wilson et al. (2007) 

used a version of Equation [4] that included vascular 

green area (VGA) as a factor. Based on 

measurements from a range of vascular plant species 

found on peatlands, they represented the seasonal 

variation of VGA in Equation [4] and found that the 

equation gave substantially better predictions of PG 

than the basic model (Equation [3]) alone. An 

alternative approach is to develop separate 

relationships between PG and I or IPAR for the 'pre-

green', 'green', and 'post-green' periods of the season. 

An example of this simpler approach is Waddington 

et al. (2010) who used the non-rectangular hyperbola 

model (see discussion after Equation [5] above). 

There is increasing interest in measuring CO2 and 

CH4 fluxes in drained peatlands used for agriculture, 

such as the East Anglian Fens in the UK (Peacock et 

al. 2019). In these systems, the concept of PG needs 

modification because PG may not be added to the 

peatland as plant litter but instead removed as a crop 

and then consumed, with the CO2 that was taken up 
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by the crop returning rapidly to the atmosphere. 

However, PG in terms of root and below-ground 

tissue production may be important in the peatland C 

balance. In addition, crop cycles (e.g. for crops such 

as lettuce) may be so short (< 4–6 weeks) that it is not 

possible to develop robust models for the seasonal 

integration of PG. Recent studies on peatlands used 

for cropland have overcome this problem by (a) 

taking multiple measurements per chamber location 

per day to capture the full range of IPAR and 

temperature, and (b) modelling PG on a 

measurement-day basis (e.g. Elsgaard et al. 2012, 

Beyer et al. 2015). Nevertheless, such work can be 

very time-consuming and expensive, as discussed 

above (this section), and it may be better to use root 

in-growth tubes/bags or mini-rhizotrons as 

alternative methods for estimating below-ground 

production (e.g. Finér & Laine 2010, Iversen et al. 

2012). 

Finally, it is worth noting that a time-efficient 

approach to developing relationships between PG and 

I or IPAR is to take multiple chamber measurements 

within a short period of time using calibrated 

shrouds. These are placed over the chamber to reduce 

I or IPAR in set steps (e.g. Whiting, 1994). For 

example, within 30–60 minutes it is possible to 

obtain estimates of PG from ambient I or IPAR down to 

light levels that represent dawn or dusk (as noted 

above, a chamber test where all light is excluded – a 

dark chamber test – provides an estimate of RT  – see 

Net ecosystem exchange (NEE)). However, soil and 

air temperatures will tend to be similar or the same 

for the different values of I or IPAR experienced during 

the steps, potentially making it difficult to fit 

Equation [4] to the data. In other words, it is still 

useful to collect PG data for a range of environmental 

conditions and not just a range of values of I or IPAR 

on one or a few occasions. 

 

Modelling ecosystem respiration (RT) 

When considered separately, RT is often modelled 

using multiple regression where RT or its logarithm is 

expressed as a function of environmental and 

vegetation-related variables (plant abundance and 

growth stage). An example is the following equation 

from Tuittila et al. (1999): 
 

( ) ( ) ( ) ( )

( ) ( )WTEVbETIb

WTbTbEVbaR soilT

+

++++=

54

35,21ln
               [8] 

 

where ln denotes the natural logarithm, EV is the 

cover of E. vaginatum, Tsoil,5 is soil temperature at 

                                            
4 This term applies to a free surface above, at, or below the ground surface. Strictly, the term 'water table' which is implied by WT' 

applies only to the free-surface within a porous medium. 

5 cm below the ground surface (C), WT is water 

level4 (assigned negative values by Tuittila et al. 

(1999) when below the surface, meaning that b3 must 

also be negative for RT to increase as water tables 

deepen) (cm), ETI is the effective temperature sum 

index (see Equation [6] above), and a and b1-5 are 

regression parameters. Equation [8] also includes an 

interaction term involving EV and WT. Tuittila et al. 

(1999) studied a regenerating cutover bog on which 

E. vaginatum had re-established. Samaritani et al. 

(2011) used a similar modelling approach to Tuittila 

et al. (1999). However, although they worked on a 

similar type of site to Tuittila et al. (1999), they 

included only water level, soil temperature at a depth 

of 30 cm (Tsoil,30) and air temperature (Tair) as 

explanatory variables. The adjusted r2 of the RT 

models was variable across both studies and ranged 

between 0.45 and 0.84. In other studies, all on 

peatland or tundra sites, a variety of RT models have 

been used and these are considered below. 

Bubier et al. (1999) modelled RT using a version 

of Equation [8] in which the second, fourth, fifth and 

sixth terms were omitted, i.e.: 

 

( ) ( )5,soilT TbaRln +=      [9] 

 

They found that Tsoil,5 was co-linear with water level 

and that the latter did not add any additional 

explanation (in the statistical sense) to the model. 

Equation [9] is the simple exponential formula. If we 

let both sides of the equation be exponents of e, the 

base of the natural logarithm (see footnote 2), we 

have: 

 
( ) ( ) TgTbaTba

T eceeeR ,soil,soil +
= 55                [10] 

 

The version of the equation to the far right is simply 

a generic form of the exponential equation with two 

parameters – c and g – which in this instance are, 

respectively, equal to ea and b. In this equation, when 

T = 0 C, the value of egT is 1, so that RT = c. Hence, 

c is simply RT when T = 0 C. g (or b) controls the 

exponential gradient and, therefore, the rate at which 

RT increases with T. 

Many biological and chemical processes are 

assumed to be described well by a Q10 value, which 

describes how much the rate of the process increases 

with a 10 C increase in temperature. Thus, a Q10 of 

2 means there is a doubling in rate of a process with 

every 10 C rise in temperature. Q10 may be defined 

mathematically as: 
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( ) 10

10

/TT

TT
b

b
Q

−
=                [11] 

 

where T  is the rate of a process at temperature T, 

and 
bT is the rate at the reference temperature Tb. Q10 

is widely used in peatland science (e.g. Whiting 

1994, Silvola et al. 1996, Bragazza et al. 2016) but 

Equation [11] is identical to the simple exponential 

equation. This can be demonstrated as follows. If Tb 

is assumed to be 0 C, we may write 

 
Tg/T

eQ =
10

10
 

 

( ) TgQln
/T

=
10

10
 

 

( ) gQln
/

=
101

10
 

 

( ) gQln =1010  

 
geQ = 10

10  

 

If we substitute this definition of Q10 into Equation 

[11], we end up with Equation [10]: 

 

( ) Tg
T

/Tg
TT ee

bb

 = 
1010  

 
Because RT in Equations [8] and [9] has been log-

transformed, the equation in each case is a linear 

equation that can be fitted to data using ordinary 

least-squares regression. After the equation has been 

fitted and values of the parameters estimated, the 

equation can be used to estimate ln(RT), given any 

values of the explanatory variable (T, EV, WT etc). 

However, these ln(RT) values have to be converted 

back to the original units when estimating time-

integrated CO2 fluxes for an area of peatland. A 

problem with doing this transformation is that it 

biases the estimates of RT because the optimal values 

of the regression parameters (a, b1 etc) have been 

fitted to the ln-transformed values of RT. This bias is 

known as 'detransformation bias' or 're-

transformation bias' and has long been known as a 

problem in biology, geography, and statistics. A good 

discussion of the problem in the context of sediment-

discharge rating curves in streams (using log-log 

regressions) may be found in Ferguson (1986). The 

magnitude of the bias depends on the scatter in the 

data. Ferguson (1986) noted errors of as much as 

50 % were possible, but it is likely biases will be 

much smaller for the estimation of RT. The bias can 

be dealt with in a number of ways as discussed by 

Duan (1983) and Miller (1984). A simple alternative 

to bias correction of a linear regression model is to 

undertake numerical non-linear regression on the 

untransformed data using error minimisation 

algorithms such as Solver (see discussion of Equation 

[3] above). In other words, the original or non-linear 

form of the equation (e.g. Equation [10] instead of 

Equation [9]) is fitted directly to the data. 

In a study of soil respiration (not ecosystem 

respiration), Lloyd & Taylor (1994) noted that the 

exponential or Q10 approach can lead to biased fits to 

data, and proposed instead the following model, 

which, although still essentially empirical, has a 

sounder theoretical basis than Equation [10] (or 

[11]): 
 















−
−

−


= 00
0

1

15283

1

10

TTT.
E

,soilsoil eRR              [12] 

 

where Rsoil,10 is soil respiration at a reference 

temperature of 283.15 K (10 °C), E0 is an 'activation' 

parameter (K), T0 is the temperature constant (K; 

Lloyd & Taylor (1994) set this to 227.13 K) and T is 

the soil temperature (K). Equation [12] can be fitted 

to data using non-linear optimisation methods (e.g. 

Solver – see discussion after Equation [3]). Soil 

respiration consists of heterotrophic and root 

respiration. It differs from RT in that it does not 

include respiration from the above-ground parts of 

plants. Despite being developed for Rsoil, Equation 

[12] has been widely used to model RT in European 

peatland studies (e.g. Drösler 2005, Veenendaal et al. 

2007, Elsgaard et al. 2012, Beetz et al. 2013, Leiber-

Sauheitl et al. 2014, Beyer et al. 2015, Eickenscheidt 

et al. 2015, Hoffmann et al. 2015). Although the 

equation appears to perform well for RT, the inclusion 

of either water-table level or volumetric moisture 

content may further improve model fits on managed 

organic soils where wet-dry cycles can have a 

significant effect on respiration rates (Renou-Wilson 

et al. 2014). 

In a study of tundra soils, Shaver et al. (2013) 

adopted a variant of the exponential or Q10 model for 

simulating RT. They used a model with a mix of 

multiplicative and additive terms as follows: 

 

( ) dLAIecR airTg
T +=


              [13] 

 

where c (denoted R0 by Shaver et al. 2013) is 

modified non-linearly by air temperature Tair (C) (as 

in Equation [10]) and linearly by leaf area index 

(LAI). d (denoted Rx by Shaver et al. 2013) is a 

constant respiration source that is independent of 

other factors. Shaver et al. (2013) note that the 



A.J. Baird et al.   MODELLING TIME-INTEGRATED FLUXES OF CO2 AND CH4 IN PEATLANDS 

 
Mires and Peat, Volume 24 (2019), Article 16, 1–15, http://www.mires-and-peat.net/, ISSN 1819-754X 

© 2019 International Mire Conservation Group and International Peatland Society, DOI: 10.19189/MaP.2019.DW.395 
 

7 

inclusion of d improves the model fit to data and 

prevents RT becoming zero when LAI is zero. 

Waddington & Roulet (1996) modelled RT using 

linear relationships with either air temperature or peat 

temperature (i.e. RT was not logged as in Equation 

[8]), with their choice between the two alternatives 

depending on model fit to data. They measured peat 

temperatures at depths of 2, 20, 40, 80 and 150 cm 

but do not say which of these was used in the peat 

temperature version of the RT model. Bellisario et al. 

(1998) modelled RT as a simple linear function of WT 

and/or air temperature (Tair), while Strack & Zuback 

(2013) modelled RT as a linear function of WT and 

Tsoil,5. With the exception of Strack & Zuback (2013) 

(r2 = 0.29), none of the above authors provide any 

detail on the goodness of fit of their RT models. 

The very simplest approach is to assume that RT is 

a constant. Such an assumption was made by Bubier 

et al. (1998) who fitted their NEE data directly to the 

following model: 
 

( ) QI

IQ
RNEE

PAR

PAR
T

+


−=



              [14] 

 

In Equation [14], RT is the intercept on the y axis 

(when IPAR is zero). Bubier et al. (1998) developed 

different parameterisations of Equation [14] for the 

early, mid, and latter part of the growing season for 

each peatland site they looked at, and used the fitted 

values of Q and RT to compare sites (a similar 

approach to Waddington et al. (2010) – see the 

discussion after Equation [7]). However, even within 

each part of the growing season one might expect RT 

to vary over time as factors, such as Tsoil , vary. 

Whiting et al. (1992) also fitted Equation [14] 

directly to their NEE data, but applied the fitted 

model to periods of 24 hours to investigate the diurnal 

response of NEE to IPAR. Under such circumstances it 

is probably reasonable to treat RT as a constant.  
 

 

MODELLING CH4 EXCHANGES 
 

In contrast to CO2, many of the studies that have 

estimated the time-integrated flux of CH4 have used 

linear interpolation rather than models (e.g. 

Waddington & Roulet 1996, Roulet et al. 2007, Beetz 

et al. 2013, Leiber-Sauheitl et al. 2014, Renou-

Wilson et al. 2014, Beyer & Höper 2015, 

Eickenscheidt et al. 2015, Vanselow-Algan et al. 

2015). The integrated flux (Fg; e.g. mg m-2) of CH4 

between a pair of flux measurements at times 1 and 2 

(t1, t2) may be estimated using: 
 

( )( )122121
2

1
ttffF ,g,g,g −+=−               [15] 

where fg is the instantaneous flux (e.g. mg m-2 day-1). 

The Fg values for each time pair may then be summed 

to give an annual total. If the intervals between 

measurements are identical across the year, the 

simple average of the flux measurements multiplied 

by the time period (i.e. 365 days) over which 

measurements were taken will give the total. 

Studies that use an interpolation-based approach 

to calculate annual CH4 emissions tend to measure at 

a high temporal frequency (such as biweekly). 

Nevertheless, day-to-day variability is often evident 

in CH4 flux data, and will not necessarily be properly 

represented by interpolation (Green & Baird 2017). 

In addition, it may not be practicable to conduct field 

measurements at a high frequency, and a modelling 

approach may be preferred. The key processes 

affecting CH4 emissions from a peatland are CH4 

production (archaeal methanogenesis), CH4 

consumption (bacterial methanotrophy), and CH4 

transport (via diffusion through the soil, via 

ebullition, and through the tissue of vascular plants) 

(Baird et al. 2009). These processes have been 

represented in a range of mechanistic wetland CH4 

models, such as that developed by Walter et al. 

(1996) (also Walter et al. 2001). However, such 

models are generally quite complicated, and, because 

of their demanding data requirements (for model 

setup and calibration), they are not generally suitable 

for use in estimating annual CH4 fluxes. Therefore, 

where authors have not used interpolation to estimate 

annual fluxes, they have instead mostly developed 

relatively simple statistical models. For example, for 

a range of Canadian peatlands, Bubier et al. (1993) 

and Bubier (1995) found relatively strong 

relationships between the log of the seasonal mean 

CH4 flux ( ( )
4CHfln ) and the seasonal mean water-

table depth: 
 

( ) ( )WTbafln CH +=
4

               [16] 

 

where a and b are parameters. Unlike the third term 

in brackets in Equation [8], where RT increases as the 

water table deepens (WT becomes more negative – 

see explanation of Equation [8]), CH4 flux increases 

as the water table becomes more shallow (WT 

becomes less negative) (and b in Equation [16] takes 

positive values unlike b3 in Equation [8]). In addition, 

as shown for Equation [9] (see also Equation [10]), 

Equation [16] is an exponential equation. In contrast 

to Bubier et al. (1993) and Bubier (1995), Bubier et 

al. (1995) found that, although water-table position 

was important, ( )
4CHfln  was best explained by mean 

seasonal peat temperature at the average position of 

the water table. Although relationships may be found 
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between the seasonal average CH4 flux and variables 

such as WT and Tsoil , models of 
4CHf  are prone to the 

same problem as interpolation: i.e., particularly high 

fluxes on one or two occasions may distort the 

average and, therefore, the seasonal or annual flux 

estimate. 

For instantaneous CH4 fluxes (
4CHf ) from a 

Dutch drained agricultural peatland, Schrier-Uijl et 

al. (2010) also found that temperature was the 

primary explanatory variable. However, instead of 

log-transforming 
4CHf  and using linear regression to 

fit their model to data (as per Bubier et al. (1995)), 

they used non-linear regression to fit the exponential 

equation: 

 
Tg

CH ecf =
4

                [17] 

 
Equation [17] is the same as Equation [10], 

although the parameter values (c and g) will differ. 

The problems of fitting models in which the flux is 

log-transformed are discussed above (see Modelling 

ecosystem respiration (RT)). For a semi-natural 

peaty grassland, again in the Netherlands, Hendriks 

et al. (2007) also found a significant exponential 

relationship between 
4CHf  and temperature; 

nevertheless, they found that model uncertainty was 

very high, and used linear interpolation as well as the 

exponential model to estimate annual fluxes. 

Like Bubier et al. (1995), Laine et al. (2007) 

found that both temperature and water-table position 

were significant explanatory variables, and applied 

the following model: 

 

( )( ) soilTs
CH eWTrqf


+=

4
              [18] 

 
where q, r, and s are parameters, WT has the same 

definition as in Equations [8] and [16], and Tsoil is soil 

temperature. Although they measured temperature at 

a range of depths, Laine et al. (2007) used the 

temperature from a depth of 20 cm in Equation [18]. 

They fitted Equation [18] using non-linear regression 

separately to each of 21 flux chamber locations (i.e. 

21 separate models were created). In all cases, Tsoil 

was significant and in a majority of cases WT was 

too; however, in eight of the 21 flux chamber 

locations WT did not add explanatory power to the 

model. 

As long ago as 1993, Moore & Roulet noted that, 

while many studies show relationships between CH4 

                                            
5 In a review of the literature Granberg et al. (1997) note that Q10 values for the relationship between methanogenesis and temperature 

range from 3.0 to 16.0, while for methanotrophy the range is between 1.4 and 2.1. 

emissions, temperature, and water-table position, 

many do not. They investigated why simple 

relationships between 
4CHf and water-table position 

do not always occur. In a laboratory experiment on 

peat cores in which water tables were first lowered 

and then raised, they found hysteresis in the 

relationship between CH4 flux and water-table depth. 

CH4 fluxes initially increased as the water table was 

lowered (became deeper), before later decreasing, 

and were much lower as the water table was raised to 

the surface after a period of 15 days when it had been 

held at a low stand of 50 cm below the peatland 

surface. Moore & Roulet (1993) attributed the initial 

rise in CH4 emissions as water tables were lowered to 

(a) the release of CH4 stored in the peat profile, and 

(b) diffusion through the air spaces in partially-

saturated peat above the water table being much more 

rapid than diffusion through the peat below the water 

table (see also Moore & Dalva (1993)). 

Some laboratory studies suggest very strong 

relationships between 
4CHf and temperature and 

water-table position (e.g. Daulat & Clymo 1998). 

However, these studies often relate to ‘ideal’ 

conditions in which fluxes are allowed to settle after 

a new temperature or water-table level has been set, 

and do not reflect the complications of the real 

system, as partly recreated by Moore & Roulet 

(1993). As well as the potential for non-linearity and 

hysteresis in the relationship between 
4CHf  and WT, 

it is important to appreciate that methanogenesis and 

methanotrophy respond differently to temperature5. 

These two processes occur at different, and often 

varying, depths in the peat profile, and the 

temperatures at these different depths may be quite 

distinct from each other and show different patterns 

over time. It is, therefore, perhaps more noteworthy 

when relationships exist between 
4CHf  and 

temperature recorded at a single fixed depth than 

when they do not. 

The complications noted above mean that the 

researcher is left with a dilemma. Simple statistical 

models vary in their ability to describe CH4 fluxes, 

and sometimes fail, while the detailed mechanistic 

models are too complicated for routine use. Perhaps 

the best approach is to use a statistical model that 

takes some account of the separate controls on CH4 

production, consumption, and transport in the peat 

profile (Granberg et al. 1997). For example, rather 

than use temperatures from a single, fixed depth, it 

may make more sense to have two temperature 

variables, one from the zone of methanogenesis and 
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one from the zone of methanotrophy (Granberg et al. 

1997), and to recognise that these zones may vary in 

depth through the year. Likewise, rather than using a 

single measure of water-table position, it may be 

better to incorporate variables that describe the 

behaviour of the water table prior to a 
4CHf  reading, 

thus accounting for some of the effects observed by 

Moore & Roulet (1993). Nevertheless, adopting this 

more detailed statistical approach requires taking 

more field measurements, and a researcher may 

decide that it is simply better to use interpolation with 

higher-frequency sampling than a modelling 

approach. Further information on the choice between 

models and interpolation may be found in Green & 

Baird (2017). 
 

 

EXAMPLE MODEL APPLICATIONS 

 

The models reviewed in the previous sections may be 

applied to single chamber locations or to data from 

multiple chambers. If there are sufficient data for 

model fitting, the former is attractive because a C 

budget can be treated as a point measurement in space 

and as a 'data unit' (datum). This way of estimating 

C-fluxes has the advantage that they can be treated 

statistically in the same way as spatial observations 

of random variables. 

The 'per chamber' approach to flux modelling was 

used on a project funded by the UK Government’s 

Department for Environment, Food, and Rural 

Affairs, on which three of us (AJB, SMG, and GPD) 

worked (Defra SP102: https://tinyurl.com/ybh9lm65, 

last accessed 27.5.2019). This project investigated 

the effect of ditch blocking on soil-atmosphere 

exchanges of CO2 and CH4 on a blanket peatland in 

North Wales. More details of the study may be found 

in Green & Baird (2017) and Green et al. (2018). 

Below we show three example models obtained for 

three locations in which flux chambers were used to 

measure PG, RT and CH4 flux. In each example, the 

vegetation comprised a mix of Calluna vulgaris (L.) 

Hull, Eriophorum spp., and Sphagnum spp. 

 

Example models 

PG data from one of the chamber locations at the site 

are shown in Figure 2. The PG data were derived by 

subtracting dark chamber test results (which give RT) 

from light chamber test results (which give NEE – see 

Equation [2]). The data set was collected over a 

period of three years (2012–2014 inclusive). As well 

as measurements of PG, the following data were 

collected: the abundance of Calluna, Eriophorum 

spp., and Sphagnum in the chamber 'footprint' (see 

Green   et   al.   2018),   air   temperature   (Tair),   soil 

 
 

Figure 2. Variation in gross photosynthesis (PG) 

with photosynthetically active radiation for one of 

the collars at the North Wales blanket peatland site. 

Note that for the purposes of plotting, PG has been 

given as positive values. 

 

 
temperature (Tsoil,10), I and IPAR (see Equations 

[3]/[4]/[5] and Figure 1), and water-table depth 

(expressed as positive below the surface). PG did not 

show a strong relationship with IPAR (Figure 2), and 

there was little suggestion of the expected simple 

rectangular hyperbola (Equation [3]/[4]). However, 

inclusion of environmental variables, as in Equation 

[4], did produce a satisfactory model. The model that 

was ultimately chosen included Tair and ETI as factors 

(Equation [4]), with the other variables making little 

difference to model performance. Tair and ETI were 

fitted by minimising the squared difference between 

modelled and measured PG values using the Solver 

optimisation tool in Excel. Instead of using a 

threshold for ETI (see discussion after Equation [6]), 

we calculated it for all temperatures (all times of 

year). We did this principally because the climate of 

the site is hyper-oceanic; i.e., although the site can 

have low winter temperatures, it also has periods 

during the winter months when temperatures are 

sufficiently high for some plant growth to occur. The 

correspondence between the measured and modelled 

PG values is shown in Figure 3, where measured 

values are plotted on the y axis and modelled values 

on the x. This might seem the wrong way round, but 

is, in fact, correct, as is explained in the next 

subsection (Judging flux model performance). 

Ways in which the correspondence between 

modelled and measured values may be evaluated are 

also briefly reviewed in the same subsection, 

including the specific case of PG in Figure 3. 

Figures 4–7 show data and models for RT and CH4 

flux from two other collars at the North Wales 

blanket peatland site. RT showed a strong linear 

relationship with soil temperature at a depth of 10 cm, 
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Figure 3. Measured vs modelled gross 

photosynthesis (PG) for one of the collars at the 

North Wales blanket peatland site. The dotted line 

is the 1:1 line. Note that for the purposes of 

plotting, PG has been given as positive values. 

with RT dropping to zero for values of Tsoil,10 between 

4 and 5 C. However, testing with a range of 

independent variables produced a better RT model 

that contained Tsoil,10, sedge abundance, air 

temperature, and ETI (as for the PG model applied 

across the year), with measured vs modelled shown 

in Figure 5. This example shows that it is important 

to consider whether a model can be improved even if 

an apparently satisfactory relationship has already 

been found (see Judging flux model performance). 

The data on CH4 flux in Figure 6 show 

considerable scatter, with no clear linear or non- 

linear relationship with soil temperature. Both linear 

and non-linear models were applied to the CH4 flux 

dataset and the model that proved most useful was a 

multiple linear regression model in which sedge 

abundance, ETI, Tsoil,10, water-table depth, and Tair 

were predictors.  The performance of the model may

 

 

 
 

Figure 4. Variation in ecosystem respiration (RT) 

with soil temperature at a depth of 10 cm for one of 

the collars at the North Wales blanket peatland site. 

 

 

 
 

Figure 5. Measured vs modelled ecosystem 

respiration (RT) for one of the collars at the North 

Wales blanket peatland site. The dotted line is the 

1:1 line. 

 

 

 
 

Figure 6. Methane (CH4) flux vs soil temperature 

at 10 cm depth for one of the collars at the North 

Wales blanket peatland site. 

 

 

 
 

Figure 7. Measured vs modelled methane (CH4) 

flux for one of the collars at the North Wales 

blanket peatland site. The dotted line is the 1:1 

line. 
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be assessed visually in Figure 7 (see also Judging 

flux model performance) 

 

Judging flux model performance 

For multiple linear regression models, such as that 

chosen for the RT and CH4 flux data in the examples 

above, it is a simple matter to assess model 

performance by looking at the r2 or adjusted r2, the p 

values of the slope coefficients, and the residuals (in 

an unbiased fit they should be scattered around zero). 

For non-linear models this is not possible; r2 for such 

models is effectively meaningless (e.g. Spiess & 

Neumeyer 2010). Yet it is desirable to compare 

different flux models regardless of whether they are 

linear or non-linear. Ultimately, when judging a 

model's predictions, we wish to see how close the 

data and predictions are to a 1:1 line. It might seem a 

simple matter to judge fit to a 1:1 line. For example, 

an apparently obvious thing to do would be to look at 

the correlation between modelled values and 

measured values or to regress modelled against 

measured and to use the r, r2 and p of the analysis to 

evaluate model performance. In another context – 

that of comparing different measurement instruments 

or methods – it has been shown that r, r2 and p can 

suggest a good model fit when the model is biased 

but precise; i.e., when the measured vs model line 

departs from the 1:1 line but model-data points 

cluster closely around the best-fit line. Solutions to 

this problem include the use of the concordance 

correlation coefficient, originally proposed by Lin 

(1989), and a variety of graphical methods developed 

by Bland & Altmann (1986). This is a large topic and 

not one that we can do justice to here, so we 

recommend readers use the cited papers as starting 

points. 

Although r2 and p values cannot reveal anything 

about the bias of a model, if used in conjunction with 

the slope coefficient and the intercept, regression can 

be a very useful tool in assessing model performance. 

The question then arises, should one regress 

modelled on measured or measured on modelled? 

Intuitively, because a model is developed from the 

data, we might think of the modelled values being 

'dependent' and the measured values being 

independent, so would regress modelled on 

measured. Piñeiro et al. (2008) show that such 

intuition is incorrect. R2 is unaffected by the way in 

which the regression is done. However, using 

synthetic data sets based on three functions (linear, 

quadratic, and logarithmic) and an algebraic 

argument,  Piñeiro  et  al. (2008)  show  that  the  slope 

 

 

coefficient gives a biased estimate of the degree to 

which modelled and measured values lie on the 1:1 

line when modelled values are regressed on 

measured. Conversely, the regression of measured on 

modelled produces the correct estimators of goodness 

of fit between the two. This approach was used in the 

three examples given in Figures 3, 5 and 7. For each 

model, the r2 was similar – in the mid 0.8s – but the 

bias varied. In the RT and CH4 models, there was 

virtually no and no bias respectively, while for the PG 

model there was bias due to a modest offset error and 

a gradient somewhat different from 1. 

A final issue to consider is model parsimony. 

Does a model include independent variables that 

contribute little to the model's predictions and which, 

therefore, may be regarded as redundant? If so, can 

we dispense with the redundant variables and make 

the model more efficient? The importance of model 

parsimony depends, in part, on the purpose of the 

model. When identification of the main controls on a 

dependent variable is desired, it is important that 

redundant variables are found and removed from 

further consideration. In such cases it is useful to be 

able to make quantitative judgements on variable 

importance. In traditional multiple linear regression, 

the adjusted r2 can be used to identify which variables 

add explanatory power to the model (Johnson & 

Omland 2004, Quinn & Keough 2002). For models 

in general (i.e. across the range of linear and non-

linear models that might be used for flux integration) 

it is common to use the corrected Akaike Information 

Criterion (AICc) to help select the most efficient 

model. More information on the criterion and how it 

can be used for model selection may be found in 

Akaike (1973, 1974), Bozdogan (1987), Hurvich & 

Tsai (1989), Johnson & Omland (2004) and Quinn & 

Keough (2002). Where models are being used, as 

here, to integrate fluxes over time, it is also desirable 

to avoid an over-specified model, but it is less 

important that the most efficient or optimal model is 

identified; of greater importance is the overall ability 

of the model to predict fluxes under a range of 

environmental conditions. To that end we 

recommend paying more attention to model accuracy 

than model efficiency. 
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