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SUMMARY 

 

Boreal bogs are important stores and sinks of atmospheric carbon whose surfaces are characterised by 

vegetation microforms. Efficient methods for monitoring their vegetation are needed because changes in 

vegetation composition lead to alteration in their function such as carbon gas exchange with the atmosphere. 

We investigated how airborne image and waveform-recording LiDAR data can be used for 3D mapping of 

microforms in an open bog which is a mosaic of pools, hummocks with a few stunted pines, hollows, 

intermediate surfaces and mud-bottom hollows. The proposed method operates on the bog surface, which is 

reconstructed using LiDAR. The vegetation was classified at 20 cm resolution. We hypothesised that LiDAR 

data describe surface topography, moisture and the presence and depth of field-layer vegetation and surface 

roughness; while multiple images capture the colours and texture of the vegetation, which are influenced by 

directional reflectance effects. We conclude that geometric LiDAR features are efficient predictors of 

microforms. LiDAR intensity and echo width were specific to moisture and surface roughness, respectively. 

Directional reflectance constituted 4–34 % of the variance in images and its form was linked to the presence 

of the field layer. Microform-specific directional reflectance patterns were deemed to be of marginal value in 

enhancing the classification, and RGB image features were inferior to LiDAR variables. Sensor fusion is an 

attractive option for fine-scale mapping of these habitats. We discuss the task and propose options for 

improving the methodology. 

 

KEY WORDS: airborne laser scanning, bi-directional reflectance, multi-image, peatland remote sensing, 

spatial variability, vegetation, 3D sensor fusion 

_______________________________________________________________________________________ 

 

INTRODUCTION 

 

Peatlands cover significant proportions of the 

Northern Boreal Zone, i.e. Fennoscandia, Canada, 

and Russia (Gorham 1991). They interact 

dynamically with the atmosphere through 

greenhouse gas exchange and currently have a net 

cooling effect on climate (Frolking & Roulet 2007, 

Gallego-Sala et al. 2018). In Finland, large-scale 

morphological characteristics distinguish the raised 

bog peatlands in the south from the northern aapa 

mires. Bogs exhibit small-scale (even sub-metre) 

topological complexity where drier hummocks, 

intermediate lawns, and wet hollows and pools vary 

along a water-level gradient (Figure 1). These 

microtopographical formations support different 

vegetation communities that have adapted to the 

prevailing moisture conditions. They differ also in 

their carbon gas dynamics: wetter surfaces are 

associated with higher CO2 binding and CH4 

emissions than drier surfaces with lower 

decomposition rates (Maanavilja et al. 2011). In 

general, northern peatland ecosystems are sensitive 

to changes in climate and the associated changes in 

hydrology (Ise et al. 2008). Peatland surface types are 

likely to respond differently to these changes (Strack 

2008). Eutrophication can have similar effects, 

caused e.g. by air pollutants from local or distant 

sources. Historically, warmer and drier periods have 

led to an increase in hummock vegetation coverage 

at the cost of hollow vegetation (Väliranta et al. 

2007). Consequently, climate change is likely to 

affect peatland carbon dynamics through changes in 

vegetation and especially through changes in the 

relative abundance of different surface types. Finding 

accurate and workable methods for monitoring bog 

microtopography and vegetation is important to 

augment our understanding of the phenomena 

outlined above. An efficient sampling scheme that 

applies accurately positioned and re-visited field 

plots constitutes an obvious choice. However, 

affordable point-based sampling does not capture 

spatial variation in the surroundings, which may be 

important  for   understanding   and   upscaling   point-
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Figure 1. A close-range view of the study area with outlined vegetation classes: 1 = high hummock (HHU) 

ridge with 1−6-m high pine trees; 2 = hummock (HU); 3 = high lawn (HL) with reddish Sphagnum rubellum; 

4 = lawn (L); 5 = hollow (HO); 6 = mud-bottom hollow (MB) with Rhynchospora alba; 7 = water (W). 

Cottongrass (CG) tussocks are pale-greyish in colour. 

 

 

based observations and downscaling micro-

meteorological eddy covariance (EC) fluxes (Morin 

et al. 2017). 

This study was initiated by a request to provide 

ecosystem modellers with a detailed wall-to-wall 

map of vegetation near a station (Siikaneva II) 

measuring ecosystem-atmosphere relations on a bog 

(ombrotrophic mire) in southern Finland. The area 

comprises a mosaic of pools, wet hollows and mud-

bottom hollows along with different lawn and 

hummock microforms (Figure  1). Previous 

systematic field surveys had proven very laborious 

due to poor accessibility, and resulted in 

geometrically distorted maps with sparse sampling. 

Thus, remote sensing became an obvious choice. The 

task resembles a case in Patagonia where Lehmann et 

al. (2016) used colour-infrared aerial images to map 

the microforms on an oroboreal bog. 

 

LiDAR and aerial imaging 

Earlier studies showed that airborne discrete-return 

LiDAR intensity correlated with surface wetness, and 

hummocks and hollows on open and sparsely 

forested mires were discernible in low-pulse density 

LiDAR data (Korpela et al. 2009). Airborne LiDAR, 

or laser scanning, is particularly suited for probing 

the geometry of forest canopies and the underlying 

terrain. The transmitted 2−10 nanosecond long laser 

pulse scatters from the illuminated targets and a 

portion of the returning photon surge is captured by 

the sensor, which measures (digitises) the profile of 

the returning signal and does range measurements on 

the fly (discrete-return system), or stores the ‘time-

stamped’ waveform (WF) for post processing. The 

position and orientation of the moving sensor are 

known so that the distance measurement turns into 

3D coordinates of the scattering scene elements. 

State-of-the art sensors process over a million pulses 

per second, sample the returning waveform at 

1 nanosecond intervals, and detect very weak signals. 

Siikaneva II is an open bog, where Sphagnum 

mosses prevail and stunted trees are rare. Thus, both 

occlusion and shading by trees are absent, permitting 

‘radiometrically intact’ interpretation where LiDAR 

and image observations ‘meet on the bog surface’ 

(Figure 2).  ‘Radiometrically  intact’  means  that  the 
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Figure 2. Illustration of ‘sensor fusion on the bog surface’. Airborne camera and LiDAR are operated 

concurrently such that the same surface patch is seen in several images (exposed at short intervals) and is 

sampled densely by LiDAR. The return waveform (blue) preserves its shape when sampling well-defined 

surfaces, while a tilted or rough surface or volumetric vegetation extends it. When the camera is moving, 

image observations are influenced by directional reflectance properties of the targets as the view direction 

(camera-target ray) changes. B = backscattering, F = forward-scattering geometry. 

 

 

solar or LiDAR illumination of the surface targets is 

predictable, and the signal measured by a pixel or the 

LiDAR receiver depends mainly on the reflectance 

properties of the targets. While an image provides 

‘continuous’ sampling of the scene, LiDAR pulses 

illuminate the scene pointwise and the sampling 

density and point pattern depend, for example, on the 

speed of the aircraft and the pulse frequency. The 

illuminated area is called a footprint and the 

irradiance in the cross-section of the footprint is 

Gaussian, as is the weight function of a pixel. The 

footprints are typically 10−40 cm in diameter from 

scanning distances of 0.5−3 km, while the field-of-

view of pixels is narrower. Camera and LiDAR use 

different light sources, and whereas the illumination 

and view directions are coincided in LiDAR, they 

vary within an image and between images (Figure 2) 

because of the mutual geometry of the direct 

illumination and the camera-target ray changes. 

Regarding the scale we note that our task of 

providing a map at 20 cm resolution differed from 

mire habitat classification, where the size of the 

habitats can reach several hectares and the 

characteristic patterns occur at multiple scales 

(Vasander & Laine 2008, Korpela et al. 2009, 

Millard & Richardson 2013, Rapinel et al. 2015). 

National monitoring efforts using satellite images 

operate at the largest scale (e.g. Poulin et al. 2002, 

Haapanen & Tokola 2007). 

 

Detailed hypotheses and summary of objectives 

The microforms are associated with the water level 

and several microform types can occur within a 

distance of one metre, or a microform may extend for 

tens of metres (Figure 1). Each microform has 

characteristic vegetation. However, many species 

occur on more than one microform (Table 1). 

Hummocks are locally high and relatively dry, while 

the lower intermediate lawn, mud-bottom and hollow 

surfaces are wetter. Even centimetre-level changes 

show as variations in the flora and gas fluxes (Riutta 

et al. 2007). We hypothesised that detailed 

reconstruction of the microtopography would require 

high-density LiDAR and that field layer vegetation 

and/or surface roughness would influence the return 

LiDAR waveforms (WFs). Specifically, the return 

WF is a convolution of the transmitted pulse with the 

cross-section profile of the illuminated target, and the 
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Table 1. Mire surface types at Siikaneva II. The Cottongrass tussock (CG) class is not an original microform; 

it was added during the field campaign because it was clearly visible in the aerial images (cf. Kalacska et al. 2013). 

 

Surface class (N) Plant community description 

High hummock, 

HHU (75) 

High cover of dwarf shrubs (Empetrum nigrum L., Calluna vulgaris (L.) Hull, and 

Betula nana L.). Bottom layer is dominated by Sphagnum fuscum (Schimp.) H. Klinggr. 

Hummock, 

HU (118) 

No shrubs, except for Andromeda polifolia L., which may constitute a significant 

percentage of the field layer. S. fuscum covers more than 10 % of the bottom layer. 

High lawn, 

HL (89) 

Field layer consists of A. polifolia and Eriophorum vaginatum L. Coverage of S. fuscum 

is less than 10 % and the dominant Sphagnum species is S. rubellum Wils. 

Lawn, 

L (205) 

Field layer may be missing, or scarcely covered by Rhynchospora alba (L.) Vahl., 

Scheuchzeria palustris L., A. polifolia, E. vaginatum or Carex limosa L. In the bottom 

layer, the dominant Sphagnum species are S. papillosum Lindb., S. magellanicum Brid. 

and S. balticum Russ. 

Hollow, 

HO (169) 

Field layer may be missing, or has R. alba, S. palustris or C. limosa. Dominant 

Sphagnum species are S. majus (Russow) C.E.O. Jensen and S. cuspidatum Ehrh. ex 

Hoffm.  

Mud-bottom, 

MB (83) 

Field layer may be missing, or scarcely covered by R. alba, S. palustris or C. limosa. 

Most of the bottom layer surface is covered by bare peat. 

Water, 

W (-) 

Open water surface without ground layer vegetation (pool). A few S. palustris shoots 

may be found. 

Cottongrass, 

CG (17) 
Tussock of E. vaginatum. 

 

 

return WF extends (echo width) if the target is 

volumetric, tilted or non-planar. Furthermore, the 

low pine trees (0.5−5 m high) with sparse crowns 

should give rise to multimodal waveforms (Figure 2), 

which enables tree detection in LiDAR data. In 

addition, the return intensity is correlated with 

surface wetness. We note that the surface geometry 

could also be established using photogrammetric 

techniques. For example, Kalacska et al. (2013) used 

a ‘drone’ (UAV) with an RGB sensor to create an 11-

hectare 2D image mosaic and thus locate cottongrass 

tussocks on a bog in Ontario, Canada. 

Spatial dependencies are present in bog vegetation 

communities. For example, it is less likely for a tall 

hummock to be surrounded by open water than by 

high-lawn vegetation. Neighbourhood rules can 

enhance target classification (e.g. Niemeyer et al. 

2013), but we omitted this approach because of lack 

of resources to collect the necessary field data and 

instead analysed the final results to assess whether 

they matched experience gained in the field in terms 

of neighbourhood relations. 

The Sphagnum mosses that dominate bogs differ 

and vary greatly in colour, but no spectral reflectance 

data were available to support image interpretation. 

Because of budget limits, we used an RGB-sensor 

that was integrated with the LiDAR. Therefore, the 

research questions regarding image data were simple. 

However, since occlusion and shading by trees is 

minimal on an open bog, we investigated how the 

images were influenced by directional reflectance 

effects, i.e. by the varying view-illumination 

geometry inside images and in overlapping images. 

This property can be regarded as a nuisance or 

exploited if multiple views are available - although 

real applications for directional reflectance 

anisotropy are very few (Korpela et al. 2014). 

Our objectives can be summarised as follows: 

1. Establish an accurate 3D match between field, 

image and LiDAR data to enable reliable 3D 

interpretation and testing of the hypotheses. 

2. Find and analyse geometric and radiometric 

features to be used as predictors of the microforms. 

Examine particularly the gain from using the WF 

and multi-image data, and analyse directional 

signal patterns in images to see if they differ 

between microforms. 

3. Test parametric and non-parametric classifiers in 

establishing the microform map in 20-cm 

resolution by applying an expert and a data-driven 

approach to feature selection. Carry out an 

elaborate accuracy assessment of the maps. 

4. Generalise the experience gained and evaluate the 

applicability of the proposed methodology. 
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METHODS 

 

Workflow of the study 

Figure 3 shows the flowchart from data acquisition to 

the final classification. Tasks that ensured sufficient 

geometric and radiometric quality for hypothesis 

testing are highlighted. The data used are depicted by 

five grey rectangles. Airborne acquisitions were done 

in 2013 and fieldwork in 2012−2014. Changes in the 

vegetation were slow but it is likely that phenology, 

surface elevation, water level and surface wetness 

varied during this time. The remote sensing data were 

adjusted for deficiencies found in quality control. 

LiDAR WFs were corrected for system-induced 

effects ('FWHM calibration') because the receiver's 

response to strong signals caused a trend in echo 

width that was not related to surface roughness but 

was an artefact. The geometry of the aerial images 

was adjusted for a mismatch between flight lines and 

a bias in focal length ('Augmented triangulation' in 

Figure 3). These steps aligned the image, LiDAR and 

field samples at an accuracy of better than 5 cm. 

The flowchart shows two types of field 

observations. The 'GNSS positioned vegetation 

samples' (n = 756) were georeferenced accurately and 

were used for pixel-by-pixel training and validation 

of the microform maps, while 'systematic surveys' 

were used for validation of the total distribution 

statistics as well as for the ordinate analyses of 

vegetation composition (Figure 4), diversity and 

overlap among the microforms. 'Close-range images' 

were taken for visualisation and their orientation was 

solved using scene elements that could be identified 

in the airborne data. Feature extraction, analyses and 

selection were carried out with the quality-controlled 

data. The selected features were then used as 

predictors by applying three different classifiers to 

create microform maps. 

 

 

 
 

Figure 3. Flowchart of this study. The primary data and processing steps are shown to the left of the dotted 

line, while the data that were used for visualisation and spatially implicit validation are to the right. The red 

dashed rectangle identifies additional tasks that ensured data quality. See text for further explanation. 
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Figure 4. DCA results on plant community composition based on vegetation data collected in 2013. Sample 

plots that were classified into the same surface types in the field are enveloped together. 

 

 

Research site and field data 

The site is a raised bog within the Siikaneva peatland 

complex in Finland, which is mainly dominated by 

aapa mires (Mathijssen et al. 2016; Figures 5, 6). The 

16-ha area of interest (AOI) surrounds the Siikaneva II 

research facilities for monitoring energy, water and 

gas fluxes. Vegetation was surveyed in 2012 and 

2013 using circular relevés, 30 cm in diameter. These 

data lacked accurate geolocations and we used them 

to validate the classified map as well as in ordinate 

analyses of the vegetation composition using 

detrended correspondence analysis (DCA; Figure 4) 

(Canoco 5.02, ter Braak & Šmilauer 2012). The 

projection coverage of each species, along with a 

microform class (Table 1, Table 2), was determined 

for the plant assembly. This classification captures 

the spatial variation in carbon dioxide and methane 

fluxes (Laine et al. 2007a, 2007b). 

To provide accurately positioned field data for 

remote sensing, a field survey was done in April 2014 

(Figure 6). The timing was optimal for accessibility, 

because the peat was frozen below the surface. 

Because of time constraints, sampling was in part 

subjective, i.e., not all locations had the same 

inclusion probability. Randomisation was secured by 

taking a certain number of steps to reach a sample. 

The samples (n = 756) were circles of varying radius 

(10−110 cm, representative of the sampled 

microform). Species in the moss and field layers 

(dwarf shrubs and herbaceous plants) were separately 

listed in order of coverage (Table 2) using the 

attributes ‘abundant’ and ‘sparse’ when necessary. 

We use Hämet-Ahti et al. (1998) for vascular plants 

and Laine et al. (2011, 2016) for mosses; the latter 

does not separate S. magellanicum into two species 

(cf. Hassel et al. 2018). The centre was GNSS-

positioned at an accuracy of better than 3 cm. 
 

Aerial images 

Imaging from a helicopter was concurrent with 

LiDAR acquisition (Table 3). Motion blur was 

observed in many of the images. The camera has a 

CCD array with wide spectral response functions of 

the Bayer-filtered pixels: 380−550 nm for blue 

(BLU), 450−620 nm for green (GRN) and 570− nm 

for red (RED). The specifications defined an 

accuracy that is better than 5 % for constant 

illumination across the CCD. No data were available 

for the stability of the shutter, i.e. variation of true 

exposure times. All images had the same nominal 

settings for aperture and exposure. The lens had 

distortions (deviation from a pinhole camera), which 

were compensated for using calibration coefficients 

that were reported in a camera calibration document. 
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Figure 5. A 200 × 200-m aerial image from May 2013. The EC tower is in the centre (350999.7E, 

6859303.5N in UTM35). The darkest surfaces are water (W). Greyish surfaces are mud-bottom hollows 

(MB). The shadows of 1−5-m-high pines are barely visible on the ridge hummocks. Green-yellowish depicts 

hollow (HO) and lawn (L) surfaces (Table 1). The sub-image on the right shows an area of 19 × 28 metres. 

 

 

 
 

Figure 6. Map of the 756 vegetation plots of 2014. 
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Table 2. Moss and field layer species occurring in the samples of 2014. N is the number of plots on which the 

species occurred (was dominant). P shows the microforms where the species was present. 

Species (abbreviation) N P 

S. fuscum (Fus) 180 (126) HHU, HU, HL, L 

S. rubellum (Rub) 231 (116) HHU, HU, HL, L HO 

S. angustifolium 13 (5) HHU, HU, HL 

S. papillosum (Pap) 150 (114) HU, HL, L, HO 

S. cuspidatum (Cus) 117 (75) HU, L, HO, MB 

S. majus (Maj) 89 (74) L, HO 

S. balticum (Bal) 175 (69) HU, HL, L, HO 

S. tenellum 1 (1) HL 

S. magellanicum (Mag) 47 (28) L, HO 

S. lindbergii 6 (6) L, HO 

Polytrichum sp. 1 (1) HHU 

Dicranum sp. 2 (2) HHU 

Lichen 4 (4) HHU, HU 

Mud 80 (80) MB 

Field layer 

A. polifolia (And) 111 HHU, HU, HL, L HO, MB 

E. nigrum 8 HHU, HU 

C. vulgaris (Cal) 51 (11) HHU, HU, HL 

C. limosa 44 HU, L, HO, MB 

R. alba (Rhyn) 274 (5) HU, HL, L, HO MB 

E. vaginatum (Erio) 221 (27) HHU, HU, HL, L HO, CG 

T. cespitosum 26 (4) HU, HL, L, HO 

S. palustris 107 HU, HL, L, HO MB 

V. oxycoccos 356 HHU, HU, HL, L HO 

 

Table 3. Sensor and acquisition parameters for the airborne image and LiDAR data. 

Camera Hasselblad H4D  

Date and time 28 May 2013; 11:30–11:50 GMT 

Azim; Elev. 212.3 and 46.6 

Pixel size 6 × 6 µm, 4.5 cm 

Bands RGB, Bayer filter, 8 bits 

Flying height 250−286 m AGL 

Image size 6132×8176, 280×372 m 

Focal length 3.5 cm 

Overlap  68 % / 68 %  

Spacing  88 / 120 m 

F; exposure  f/6.8; 6.25 ms 

Speed 35 m s-1 

Flight lines 3 + 1  

LiDAR Riegl LMS-Q680i 

Wavelength 1550 nm 

Pulse Repetition Freq. 267 kHz 

Scan angle ± 30° 

Pulse density 47−81 pulses m-2 

Divergence/footprint, 1/e2 0.3 mrad / 9 cm 

WF sampling 1 ns at 8 bits 

Width, FWHM 4.5 ns 
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Geometric match of the image data and field data 

The exterior orientation of the images (by the 

supplier, using MATCH-AT, Inpho, Germany) was 

deemed unsatisfactory as flight lines matched at an 

RMS accuracy of two pixels only. Therefore, we 

measured new tie points (using iWitnessPRO V4.0, 

Photometrix, Australia) and applied a later camera 

calibration in triangulation (bundle block adjustment, 

in-house software written in C++), which improved 

the RMSE to 0.6 pixels (3 cm). When the XYZ 

coordinates of the tie points were contrasted with 

LiDAR and field GNSS, a consistent 30-cm vertical 

offset was observed, and it was compensated by 

correcting the camera constant by 0.1 %. Planimetric 

XY accuracy was analysed by letting the bright 

cottongrass and dark mud-bottom samples vary 

systematically around their GNSS positions. The 

samples were small and distinct (cf. Kalacska et al. 

2013). The brightness features peaked consistently at 

offsets of less than 5 cm, i.e. the images matched well 

in 3D with the field GNSS. 

 

Properties of the WF-recording LiDAR data 

The LMS-Q680i WF-recording sensor (Table 3) 

transmits 4.5-ns-long pulses, which have a bell shape 

in the time domain. The return pulse is a convolution 

of the transmitted pulse with the backscatter cross-

section profile of the illuminated targets. Backscatter 

cross-section corresponds to backscatter reflectance 

in well-defined planar targets such as Sphagnum 

surfaces, in which the return pulse preserves the 

shape of the system WF and the peak amplitude can 

be used as a proxy for reflectance. However, if the 

pulse arrives at an oblique angle, the return WF is 

extended and the peak is dampened, which can be 

difficult to correct for in real data (Jutzi & Gross 

2009, Kaasalainen et al. 2011). This effect was 

expected to remain below 0.2 ns (3 cm) in our data, 

because the scan zenith angles varied from 0 to 30 

and the pulses were 9 cm in diameter. The return 

pulse widens also if the backscatter cross-section 

profile extends over a depth (Figure 2), which is 

typical in vegetation (Höfle & Pfeifer 2007, Wagner 

et al. 2007). For example, a pulse that reflects from 

two surfaces that are separated by 30 cm widens by 

two nanoseconds. The widening thus relates to 

surface roughness, which we wanted to exploit (cf. 

Doneus et al. 2008). The sensor digitised the 

amplitude values of the return signal at 1 ns intervals. 

The storage was limited to meaningful 60-sample 

sequences, between which the storage could be 

stopped, which may result in missing sequences of 

very low backscattering between tree canopy and the 

ground (cf. Korpela 2017). Completely missing data 

was observed in Siikaneva for pulses that were 

entirely absorbed by water. 

LMS-Q680i hosts two receivers that follow a 

common photon detector. This detail became 

relevant because the so-called high-gain receiver's 

WF data were saturated for the strongest signals. The 

saturation caused the calculated full-width-at-half-

maximum (FWHM, echo width) to depend on target 

brightness, which was undesirable as we sought pure 

measurements of surface roughness. Echo width of 

planar targets increased with increasing peak 

amplitude, from 4.4 to 5.0 ns, although it should not 

change at all. We corrected this using a model that 

predicts the FWHM of well-defined targets by 

accounting for the influence of signal strength. The 

ECHOW feature was defined as a deviation from this 

baseline, i.e. if the observed FWHM was 6.0 ns for a 

strong signal, ECHOW was 1.0 ns. 

In addition to WF data, we had discrete returns 

(XYZ points with return intensity), which were 

postprocessed to provide ratio-scale intensity values. 

Owing to ratio-scale data, we could normalise the 

intensities for range-dependent spherical losses 

(Ahokas et al. 2006, Korpela 2008). This reduced 

intensity variation, which is up to  30 % in well-

defined surfaces at scan zenith angles reaching 30 

degrees. We note that the correction of spherical 

losses is ambiguous in canopies (Korpela et al. 2010, 

Gatziolis 2011, Korpela 2017), but we used intensity 

data for the bog surface only. 

 

Geometric match between LiDAR and field data 

The LiDAR echoes were processed into a raster 

elevation model (DEM) at 10 cm resolution. 

Validation showed an RMSE (including 2−3-cm 

imprecision of the 756 GNSS points) of 4.2 cm and a 

mean error of + 0.3 cm. The inaccuracy of high 

hummock (HHU) was largest, while high lawn (HL) 

showed the smallest errors. The match between 

LiDAR and GNSS was analysed, as for the images, 

by letting the GNSS positioned samples move. The 

RMS of differences reached a minimum of 4 cm at a 

2-cm XY offset, which implied high accuracy of co-

registration. 

 

Derivation of LiDAR-based features for 

microform classification 

Table 4 lists the features computed from the DEM 

and Figure 7 illustrates three important LiDAR-based 

features. INTENSITY was based on the intensity 

values of single-echo pulses with ECHOW < 6 ns and 

height < 0.5 m (ground echoes free from canopy 

transmission losses). A binary WATER mask was 

delineated manually using several aerial images in 

the digitisation. A binary TREE mask was based on 

echoes with a height > 0.6 m. 
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Image feature extraction 

The RGB values for the 3D surface points were 

retrieved using standard collinear equations and the 

values in each image were collected from an N × N 

window, where N was tried at 1, 3, 5, 7 and 9. The 

image features included the mean, the standard 

deviation, the maximum, the minimum, and the 25 % 

and 75 % quantiles of the RED, GRN and BLU bands 

as well as the band ratios and the first principal 

component. 

 

View-illumination geometry and variance 

analysis of image data 

We investigated directional signal anisotropy in 

images. If microforms display similar anisotropy, this 

enables the use of a single correction of the image 

values to nadir geometry at (x = 0, y = 0) in 

Equation 1. Between-class differences would 

potentially enable exploitation of the anisotropy in 

classification, although real applications are few 

(Korpela et al. 2014). In brief, each image 

observation is made from a view direction and the 

target is mainly illuminated from one direction. 

These vectors are collinear in LiDAR, while their 

mutual geometry varies from image to image. We 

modelled the directional anisotropy by assuming a 

fixed illumination, as imaging lasted only 

20 minutes. The geometry was thus simplified to 

azimuth difference () and the view zenith angle (). 

 is the difference between the solar azimuth and the 

azimuth of the target-camera ray. It ranges from 0° to 

180°. The range of  was defined by the field-of-view 

of the camera and was < 40°. A transformation into a 

polar representation followed: 

x =   cos(); y =   sin()          [1] 

In nadir, x = 0 and y = 0. For small values of y, the 

pixels are near the principal plane, where the camera, 

target and sun are aligned. Backscattering geometry 

is associated with positive values of x, while negative 

values denote forward-scattering geometry (Figure 2). 

Natural targets appear brighter in backscattering 

geometry because the shaded sides remain invisible, 

while the opposite is true in forward-scattering 

geometry. The directional effects are also influenced 

by the atmosphere, but we made no attempt to correct 

atmospheric effects, i.e. to derive reflectance 

quantities; thus, we apply the term 'signal'. 

The anisotropy was investigated using regression 

analysis by fitting Equation 2 to the image features 

(cf. Korpela et al. 2011). The parameters were chosen 

using stepwise selection in both directions. Strong 

predictors were retained to avoid improbable 

oscillation. 

 

 

Table 4. DEM features implemented in QGIS (Quantum GIS Development Team 2015), ArcGIS (ESRI Inc., 

Redlands, CA, USA), GRASS GIS (GRASS Development Team 2015), or on an in-house photogrammetric 

workstation. 

 

Feature Description 

SDEV Standard deviation in a 3 × 3 (30 × 30-cm) window. Local surface roughness and/or slope.  

SLOPE & 

SRANGE 
QGIS 2.10: maximum rate of change in a 3 × 3 window. The range of slope values. 

HU-IND 
A ‘hummock index’ that looks for the minimum elevation up to a specified distance, in eight 

cardinal directions, and computes the difference.  

DEPR-IND 

A ‘depression index’. Collects elevations from the eight cardinal directions up to a specified 

distance and fits univariate regression to each direction. Computes the sum of the coefficients, 

which are assigned +1 or −1 for positive or negative coefficients. A ‘perfect peak’ is 8, while 

−8 corresponds to a depression. Finds the small-scale variation in the mire surface. 

FLATNESS 

Computed in a window by taking the smallest sum of elevation differences among the eight 

cardinal directions. Indicates if the point of interest has a local flat surrounding in at least one 

of the directions. 

DISTHUM 

Distance to closest hummock border (HU-IND > 0.2 m). The thresholded HU-IND raster was 

processed twice with the majority filter in the Spatial Analyst of ArcGIS. Then, unique labels 

were given for each contiguous area. This raster was converted into vector format and areas 

smaller than 10 m2 were removed. Finally, the Euclidean distance tool was applied to create 

a map with distances to the closest hummock. 

Texture 

features 

Textural features Contrast, Entropy, Angular Second Moment and Inverse Distance Measure 

were derived in GRASS. The features were computed in 3 × 3 and 5 × 5 neighbourhoods. 
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Figure 7. Illustration of the HU-IND (large values only), FLATNESS and INTENSITY feature maps. The 

white cells are WATER. FLATNESS peaks in slopes. INTENSITY is high in hummocks and low in water, 

hollows and mud-bottoms. The raster cells are 20 × 20 cm. 
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DN(x,y) = a0 + a1x + a2y + a3xy + a4x
2 + a5y

2 + a6x
2y + a7xy2 + a8x

2y2 + a9x
3 + a10y

3 + ε     [2] 

 

In Equation 2, DN is the image feature for a mire 

surface patch that is seen in the given xy geometry. 

When Equation 2 was fitted, the mean values (a0) 

were obtained for the nadir geometry (Table 5). 

We can assume that the variance of image 

observations representing a microform class is 

explained by directional anisotropy-trend (Equation 2, 

Figure 8), a sample effect and residual error. Mixed-

effect models (Equation 3) were fitted to the data on 

each band and microform to analyse the sources of 

variance. The sample effect is supported by the idea 

that the species composition influences the observed 

‘reflectance’ and causes the sample to appear ‘bright 

or    dark’    in    all    geometries.    Directional    signal 

 

Table 5. Mean image DN values at nadir and the 

corresponding band ratios. 

  HHU HU HL L HO MB CG 

RED 152 162 166 164 162 140 180 

GRN 138 140 142 141 143 127 165 

BLU 110 112 112 101 102 116 134 

R/G 1.10 1.16 1.17 1.16 1.13 1.11 1.09 

R/B 1.38 1.44 1.48 1.61 1.58 1.21 1.34 

G/B 1.25 1.25 1.27 1.39 1.40 1.09 1.23 

 

 

 
 

Figure 8. GRN band mean feature as a function of x in Equation 1. HO (upper pane) shows an increase also 

in the forward scattering geometry (x < 0), while HHU (lower pane) shows a decrease. 
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anisotropy (the term DN(x,y) in Equation 3) 

explained 4−34 % of the variance, while the target 

effect explained 56−83 %, and the residual variance 

was 7−20 % (Table 6). In L, 83 % of the GRN band 

variance is due to the targets, i.e. a bright L sample is 

bright in all images. In lawn (L), the mix of 

Sphagnum species can vary greatly. Similarly, 

hollows (HO) are rather homogenous, but their 

colour varies from sample to sample according to the 

dominant Sphagnum species and wetness, and the 

target effect is strong (Table 6, Figure 9). Mud-

bottom hollows (MB) display dark colours for the 

wet cases and are greyish when R. alba occurs. In 

high-hummock (HHU), anisotropy explains as much 

as 34 % of the BLU band variance. HHU, HU and 

CG are microforms where directionality explained 

20 % or more. Their vegetation casts shadows and 

they remain unseen in the backscatter geometry. The 

residual variance cancels out when multiple images 

per target are available; the values were low. 

DNclass,band  =  DN(x,y) + sample effect +          [3] 

Directionality (DN(x,y)) poorly explained the signal 

variance in surfaces lacking vascular plants (HL, L, 

HO, MB) and the weak trends showed an increase in 

both directions along the solar principal plane, while 

in shrub-rich HHU and HU the signal decreased 

slightly in the forward scattering direction (Figure 8). 

The results suggest that single band-specific 

directional anisotropy models (i.e. Equation 2 fitted 

to all data) will not be optimal for correcting the pixel 

values to common nadir geometry. This weighting is 

important if the image data are not balanced, i.e. if 

some areas are seen in only one geometry. 

 

Feature analyses and selection for microform 

classification 

We first aimed to find predictors using expert 

judgment  relying  on  experience  in  statistical  feature 

Table 6. Partition of DN (mean values in 5 × 5 

window) variance between the terms of the mixed-

effects models (Equation 3). Percentages (%) of total 

variance. 

 

 Anisotropy Target Residual 

Class R G B R G B R G B 

HHU 31 28 34 60 62 56 9 10 10 

HU 20 13 17 61 75 69 19 12 14 

HL 12 7 10 69 83 77 19 10 12 

L 7 8 8 79 82 80 14 10 12 

HO 5 12 8 83 73 81 12 15 11 

MB 5 5 4 79 74 79 16 21 17 

CG 25 17 25 67 74 68 8 9 7 

 

 

selection and our knowledge about the mire 

vegetation and the data, to avoid a black-box 

approach. ANOVA, Tukey's test, correlation 

analyses and LDA (linear discriminant analysis) 

provided help in selecting the expert variables. The 

second approach was data-driven and used the 

feature importance metrics of the random forest (RF) 

algorithm. 

 

Classification methods 

The classifiers included parametric and non-

parametric methods: the k-nearest neighbour (kNN), 

LDA and RF (Breiman 2001, Hastie et al. 2001, Liaw 

& Wiener 2002). Maximum likelihood was applied 

in LDA to estimate the class means and covariances. 

Leave-one-out validation was used with kNN and 

LDA, whereas out-of-bag (OOB) validation was used 

with RF. Five nearest neighbours were searched for 

with  kNN, and class determination was based on the

 

 
 

Figure 9. RED band values (5–12 images per sample) of HO sample plots. The vertical line joins the 

observations of images that 'view' the sample plot. The target effect for HO on RED band was 83 %, which 

is reflected by the clustering in the Figure. 
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inverse Euclidean distances. kNN features were 

standardised to zero-mean and unit-variance. A total 

of 350–500 trees were used in RF, which was based 

on the saturation of the OOB estimates. 

 

 

RESULTS 

 

Feature analysis for microform classification 

Because of the anisotropy, the analyses were 

constrained by the view-illumination geometry. For 

example, Figure 10 shows that MB and CG separated 

well in the RED/GRN image feature. The influence 

of the Sphagnum species on image features was 

examined by species groups. The largest differences 

were observed in the band ratios. RED/GRN was the 

highest in reddish mosses - S. magellanicum and 

S. rubellum (Figure 11). The greenish S. cuspidatum 

showed the lowest RED/GRN values. HO surfaces 

have a low RED/GRN ratio, which is in line with 

findings concerning S. cuspidatum and S. majus. 

Concerning the field layer, the presence of 

C. vulgaris, A. polifolia, E. vaginatum or R. alba 

resulted in lower RED/GRN values (Figure 11) 

probably because of shadow-casting and 'greyish 

colours' of the listed species. It is evident that the 

motion blur caused an averaging effect that reduced 

the differences in Figure 11. 

 

 
 

Figure 10. Boxplot diagram for the RED/GRN 

image feature. Observations are constrained by 

azimuth difference (45° >  < 135°). The width of 

the bars depicts the number of observations. 

 

 

 
 

Figure 11. Boxplot comparison of the RED/GRN image feature in plots vegetated by (a) Sphagnum mosses 

only and (b) Sphagnum mosses with field layer vegetation. The labels ‘XXX’, ‘XXXDom’, ‘XXX-YYY’ 

are interpreted as 'Species XXX is found', 'Species XXX dominates' and 'Both XXX and YYY are found', 

respectively. Abbreviations are given in Table 2. Azimuth difference is limited to 90° ± 45° (stratum) to 

constrain the directional effects. Note that groups are not limited and, for example, S. balticum can occur in 

groups ‘Maj’, ‘MajDom’, ‘Maj-Cus’, etc. 
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The microforms exhibited characteristic traits in 

many LiDAR-based features. The hummock index 

(HU-IND) measures the height relative to local water 

level and showed a clear response from MB to HHU 

(Figures 7 and 12). The depression index was 

correlated with the hummock index but was specific 

in CG (data not shown). According to expectations, 

INTENSITY was lowest in wet surfaces (Figure 12). 

The variation was high in MB, probably because of 

ample within-class variation in wetness and the 

varying presence of field layer. CG was bright in both 

RGB and LiDAR. As could be expected, ECHOW 

differed in CG and HHU surfaces, owing to the 

vegetation and rough topography. The 0.1−0.4-

nanosecond difference corresponds to a 1.5−6-cm 

depth variation (Figure 12). ECHOW varied the least 

in L and HO, which is reasonable as these surfaces 

are flat and have sparse field layer. ECHOW should 

rise with increasing scan zenith angle and the 

maximal widening should have been approximately 

0.2 ns (3 cm) at the 32° oblique angle. However, the 

effect was not observable. Figure 13 shows the 

relationship of the Sphagnum species with local 

elevation. S. fuscum is a hummock species while 

S. majus and S. cuspidatum grow in hollows. 

 

Feature selection for microform classification 

As already explained, we aimed for deductive ‘expert 

features' and data-driven 'RF features'. Selection was 

done for image and LiDAR features in addition to 

their combination. The best single-image features 

were the mean features of RED, GRN and BLU as 

well as the band ratios. The window size had only a 

minor effect. As each surface point in the 20-cm grid 

could be viewed in up to 14 separate images, we com-

puted mean features by calculating the average of the 

single-image features, as well as by calculating the 

average of observations that were first normalised to 

the nadir geometry, using the xy-dependent parts of 

the per-band anisotropy polynomials (Equation 2) 

that were estimated in data that combined all 

microforms. The band-ratio image features showed 

only very weak signal anisotropy. 

HU-IND was always the best single LiDAR 

predictor (Figure 12, Tables 7 and 8). It measures 

local elevation and was an important RF variable for 

the detection of HO, HU and HHU. Similarly, the 

textural DEM features showed lower F-values than 

the simple standard deviation. The Gini-importance 

measure of RF was mostly in line with F-tests, except 

for DISTHUM, which was a more significant 

predictor in RF. 

In Tukey’s test, the mean RED and GRN/BLU 

image  features  were  able  to  separate  three  classes, 

 

 
 

Figure 13. Boxplot of the hummock index (HU-

IND) in vegetation plots, where Sphagnum moss 

species occurred in various combinations. See also 

Figure 11 for an interpretation of the classes. 

 

 
 

Figure 12. Boxplot graphs of three LiDAR features. FWHM refers to ECHOW feature. 
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whereas the other bands or band ratios could separate 

only two; or in the case of RED/GRN, none (not 

tabulated). The classes that differed systematically 

were CG (bright) and MB (dark), followed by HO. 

The best LiDAR descriptors were HU-IND and 

DEPR-IND, which were able to separate 5–6 of the 

seven classes. The separation of HO and MB as well 

as L and CG using image features was particularly 

advantageous (cf. Kalacska et al. 2013), as these 

classes separated poorly using the DEM features HU-

IND and DEPR-IND. 

Expert features combining both data sources were 

GRN,  BLU,  RED/GRN,  HU-IND, SDEV, DISTHU  

 

 

Table 7. F-values for some of the LiDAR-based 

features. 

 

Feature F-value 

Hummock index (HU-IND) 420 

Depression index (DEPR-IND) 133 

Flatness index (FLATNESS) 38 

Standard deviation of Z (SDEV) 54 

Range of slope 37 

Slope 20 

Distance to nearest hummock (DISTHU) 4 

Other features  

INTENSITY 77 

ECHOW 11 

 

 

Table 8. Twelve variables selected by RF (sensors 

combined). 

 

Feature Gini Ranks highest for classes 

HU-IND 121 HO, HU, HHU 

G/B 83 HL, MB 

DEPR-IND 62  

R/B 59  

R/G 55 L 

INTENSITY 42 CG 

DISTHU 38  

FLATNESS 36  

R 31  

G 30  

B 30  

ECHOW 30  

and INTENSITY. Expert LiDAR variables were HU-

IND, SDEV, DISTHU, INTENSITY and DEPR-

IND, while the expert image features included the 

mean features and the band ratios. The RF variables 

are shown in Table 8. Classes with the highest or 

lowest elevation ranked HU-IND as the most 

important variable, whereas the classification of 

intermediate classes HL and L benefited from image 

observations. RF-selected LiDAR features were HU-

IND, DEPR-IND, INTENSITY, DISTHU, SDEV 

and SRANGE. The RF-selected image features had 

the mean R and G features, as well as the band ratios. 

 

Classification results and validation 

Table 9 shows that LDA and RF performed quite 

similarly. The highest overall accuracy (OA), 71 %, 

was obtained with RF and the corresponding 

microform map is shown in Figure 14. The combined 

features outperformed the use of LiDAR or image 

features only. Class-by-class results in Figure 15 

show that the accuracy of HL was low, 25–42 %. 

The error matrices for LDA are in Table 10. High 

lawn (HL) was deemed variable in the field, and this 

was also displayed in the ordinate analyses 

(Figure 4). Because of the similarities in vegetation 

(e.g. the red S. magellanicum and S. rubellum) and 

elevation, HL was confused with lawn (L) and low 

hummocks (HU). Mud-bottom hollows (MB) were 

classified best and only a few hollow (HO), L and CG 

samples were misclassified into MB. L was 

misclassified into the 'neighbouring' classes HO and 

HL. It is worth noting is that L was the most common  

 

 

Table 9. Best-case classification performance in 

leave-one-out and out-of-bag validation in overall 

accuracy and (, kappa statistic) using the three 

classifiers and two feature sets. 

 

Feature set 
Classification method 

LDA RF kNN 

Expert – Combined 
69 

(0.62) 

67 

(0.59) 

62 

(0.53) 

RF – Combined 
68 

(0.60) 

71 

(0.64) 

61 

(0.52) 

Expert – LiDAR 
57 

(0.46) 

59 

(0.49) 

52 

(0.41) 

RF – LiDAR 
57 

(0.47) 

61 

(0.52) 

50 

(0.38) 

Expert – image  
54 

(0.43) 

52 

(0.40) 

49 

(0.37) 

RF – image 
53 

(0.43) 

53 

(0.42) 

49 

(0.38) 
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class in the field (Table 1). Many (30−39 %, Table 10) 

HO samples were classified as L, which had a 

significant effect on the overall accuracy, as HO was 

the second largest class. The 'better' performance of 

RF was due to an improved detection of the HO class 

(Figure 15). Figure 16 illustrates the classification 

results in a close-range image. 

If we did not treat confusion between HU and HL, 

HL and L, L and HO as errors, OA increased to 79 % 

( = 0.74) with LDA and to 85 % ( = 0.76) with RF. 

 is the simple kappa statistic. Confining to samples 

having a radius >15 cm (N = 626),  in RF improved 

from 0.64 to 0.66. Restricting the radius to >25 cm, 

 was 0.68. The improvements are explained by the 

small geometric imprecision that influences small 

samples. The general correction of image feature 

values to nadir-geometry reduced the OA by 1−1.5 % 

compared to the direct use of averages. This decrease 

in accuracy is explained by the between-class 

differences in directional reflectance, and the nadir 

correction incorrectly weighted the image 

observations. 

The results of the classification were contrasted 

with the field inventory data from 2012 (Table 11). 

The proportion of L was overestimated using remote 

sensing, while HL and HHU were underestimated. 

The spatial dependencies between microforms were 

analysed to further validate the microform map. The 

3 × 3-neighbourhood analyses in Table 12 show, for 

example, that the tree mask-based tree crowns are 

compact (Tree-to-Tree connectivity is 93.8 %) and 

grow on HHU surfaces (4.7 %). Similarly, CG, HL 

and HU form small patches as their self-connectivity 

values are low. These findings are rational, as is the 

result indicating that the most common neighbours of 

water patches are MB, HO and L. 

 

 

 
 

Figure 14. RF-classified map of the AOI. The field-of-view of the close-range image shown in Figures 7 

and 16 is marked in the south. 
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Figure 15. Class-by-class classification accuracy 

by using (a) the RF algorithm and RF variables and 

(b) the combined features in two feature sets and 

three classifiers. 

Table 10. Best-case LDA classification performance 

with the combined (top row), image-based (middle 

row) and LiDAR-based (bottom row) expert features. 

Leave-one-out CV. 

 MB HO L HL CG HU HHU Total Acc 

 77 1 5     83 93 

MB 72 1   4  6 83 87 

 32 43 8     83 39 

 7 108 50  2 2  169 64 

HO 6 98 57  1 2 5 169 58 

 7 93 66  1 2  169 55 

 3 21 167 10 3 1  205 81 

L 2 29 129 7 3 18 17 205 63 

 6 33 155 6 1 4  205 76 

  2 23 31 5 28  89 35 

HL 1 5 16 22 6 34 5 89 25 

 3 3 32 19 5 27  89 21 

 1  3  10 3  17 59 

CG 1  2  12 1 1 17 71 

 1  3  9 3 1 17 53 

 1 2 9 18 7 72 9 118 61 

HU 4 3 22 21 9 53 6 118 45 

 2  22 6 8 67 13 118 57 

   1  6 11 57 75 76 

HHU 8 4 24 2 6 12 19 75 25 

 1    4 13 57 75 76 

 

Figure 16. Visualisation of the resulting LDA-classified raster map with 20 × 20-cm cells. The location is 

shown in Figure 14. 
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DISCUSSION 

 

We demonstrated the co-use of passive imaging and 

WF-recording LiDAR for the classification of oligo-

ombrotrophic bog vegetation in a 16-hectare area, 

where water and mud-bottom hollows had a joint 

coverage of about 20 %, while Sphagnum mosses 

prevailed on the other surface types. The microforms 

were high hummock (HHU), hummock (HU), high 

lawn (HL), lawn (L), hollow (HO), mud-bottom 

(MB), water (W) and cottongrass (CG). The 

topography  of  the  bog  was  specific  as  the  surface  

 

 

Table 11. Comparison of classification results (%) 

within a radius of 150 m from the EC tower. The 

standard error estimates in percentage points are 

given in parentheses for the 2012 (systematic cluster-

based) field inventory and are based on the random 

sampling assumption. 

 

Class RF LDA Field 

W 2.3 2.3 2.0 (0.9) 

MB 15.9 17.2 15.8 (2.0) 

HO 19.9 14.2 19.2 (2.4) 

L 26.9 29.5 18.2 (2.2) 

HL 7.2 5.0 12.8 (1.8) 

CG 0.6 5.3 -      (-) 

HU 11.0 10.9 10.8 (1.6) 

HHU 16.2 15.6 21.2 (2.5) 

elevation and water level increased in steps between 

long hummocks (ridges) that had a separation of 

25−100 m. The target classes were specified by 

ecologists, and while the botanical descriptions were 

rather unambiguous, the DCA analyses and 

experience in the field gave support to the 

anticipation of large within-class variation as well as 

between-class overlap. Thus, very high (> 90 %) 

classification accuracy could not be expected. 

High ground sampling density LiDAR echoes 

captured the local elevation variation at an RMS-

accuracy of about 3 cm, which enabled the detection 

of hummocks, hollows and intermediate surfaces. 

Waveform data were useful in detecting trees and 

echo width was specific to two target classes with 

taller field layers. As expected, LiDAR intensity at 

1550 nm was associated with wetness. 

The colours of the aerial RGB images could be 

linked with the colouring of the various Sphagnum 

species. Ten different Sphagnum species were 

identified in the field. However, as it is known that 

their colours vary with moisture content and light 

exposure and are not distinctive features, RGB image 

features were not particularly strong predictors. 

We analysed directional anisotropy, which is 

influenced by the reflectance properties of the objects 

and which affects image observations made in 

varying view-illumination geometry. This variation 

is always present even in a single frame image and 

needs to be accounted for when multiple images of 

the same target are acquired. The findings implied 

that class-specific differences exist, and they hinder 

the use of a single BRDF-correction to correct for 

anisotropy  induced  imbalances  in  multi-image  data.

 

 

Table 12. Neighbourhood relations between classes (%). For example, 36.7 % of the 3 × 3-neighbourhood 

pixels of high lawn (HL) pixels belong to the same class, while 23 % belong to hummock (HU). DB = white 

wooden duckboard (see Figure 14; manually delineated). All cells are non-zero. 

 

 MB HO  L HL CG HU HHU Tree  W DB 

MB 82.5 5.4 8.6 1.3 0.1 1.4 0.3 0.1 0.3 0.0 

HO 3.9 71.9 21.7 0.8 0.2 0.4 0.5 0.5 0.1 0.0 

L 4.3 15.2 66.3 7.9 0.9 4.4 0.7 0.3 0.0 0.0 

HL 2.5 2.2 30.0 36.7 2.0 23.0 3.1 0.4 0.0 0.1 

CG 2.1 5.6 30.0 18.4 27.3 13.6 2.1 0.9 0.0 0.1 

HU 1.8 0.7 11.5 15.7 1.0 54.8 14.0 0.5 0.0 0.0 

HHU 0.3 0.7 1.3 1.5 0.1 10.0 81.6 4.5 0.0 0.0 

Tree 0.1 0.7 0.5 0.2 0.0 0.4 4.7 93.4 0.0 0.0 

W 3.3 1.6 0.9 0.1 0.0 0.1 0.1 0.0 93.8 0.1 

DB 1.0 1.4 2.4 1.1 0.1 0.8 0.8 1.6 0.3 90.5 
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The classification trials confirmed this, when nadir-

corrected image features were outperformed by 

simple averaged values. The wide-band RGB-sensor 

data did not show spectral differences in anisotropy, 

although it was expected that the BLU band would 

show lesser effects due to diffuse solar illumination. 

Analyses of variance using mixed-effects modelling 

revealed a strong target effect, i.e. the field sample 

deviated consistently in all views and the residual 

error, that cancels out when multiple image 

observations are weighted for a mean value, was 

small. A large part of the feature variance is 

explained by the target itself. This effect explains 

why additional image observations do not usually 

improve the classification performance significantly 

(e.g. Packalén et al. 2009, Korpela et al. 2014, cf. 

Jääskeläinen et al. 1994). We could show between-

class differences in anisotropy that were linked to the 

presence and type of field layer. Directional 

anisotropy explained from 4 to 30 % of feature 

variance and the surfaces varied in how the signal 

changed away from the nadir towards the back- and 

forward-scatter geometries. 

Our method aimed to produce a raster map at a 

resolution of 20 cm. All predictors were represented 

by raster models in the same grid. The LiDAR, image 

and field data were accurately co-registered, which is 

a necessity. However, it is advisable to use 3D 

monuments and signals in the field to assure co-

registration, as the use of natural targets (which we 

needed to resort to) is less accurate. We used 

topographic and image texture to assess the match 

between LiDAR/image and field GNSS data. As we 

had no signals in the field, the exterior orientation of 

both the images and LiDAR relied on direct sensor 

orientation which, unless the sensors are accurately 

calibrated, introduces a risk of systematic geometric 

errors. In our data, the camera calibration had an error 

in the camera constant that caused the 

photogrammetric image block to be systematically 

off by 30 cm. In addition, the original automatic 

aerial triangulation had resulted in an image block 

with few tie points between flight lines. Motion blur 

in the images had possibly contributed to this 

outcome. It is evident that LiDAR could have been 

replaced by photogrammetry in reconstructing the 

geometry of the bog surface, by utilising low-altitude 

imaging and UAVs. However, in that case LiDAR 

intensity and the waveforms traits would be absent 

and the detection of trees would have been 

challenging as the crowns were sparse and poorly 

visible in the images. 

The echo width measurement in the LMS-Q680i 

sensor was influenced by signal strength. The 

observed 0.6-ns or 9-cm system-induced trend would 

typically be neglected in e.g. forest canopies, but the 

trend could not be overlooked in analysing the 0−30-

cm-high field layer vegetation. Similar findings 

concerning the limited bandwidth characteristics of 

WF-recording sensors are presented by Korpela 

(2017), who reported small differences between the 

echo width of weak and strong signals in the Leica 

ALS60 sensor. Normalising the non-linear amplitude 

scale enabled accurate observations of surface 

roughness within the footprint, and, as expected, echo 

width was larger in hummock and cottongrass 

vegetation. Factory calibration of the sensor was 

applied by the data provider and the discrete-return 

intensity data were on the ratio scale, which enabled 

the use of the radar equation to carry out range 

normalisation. If the intensity data are not on the ratio 

scale, the correction using the radar equation worsens 

data quality (Korpela et al. 2010). 

The DEM and intensity features were good 

LiDAR predictors. Both LiDAR and aerial image-

based features were needed for best-case 

classification performance. In general, LiDAR 

features were superior. However, cottongrass 

separated well in the images, which is in accordance 

with the findings of Kalacska et al. (2013). 

Lehmann et al. (2016) employed a UAV equipped 

with a modified colour-infrared camera for 

classifying microtopography on a hummocky 

(valley) bog in Patagonia and obtained impressive 

results, with an OA of 86 % ( of 0.83). They had 

five classes, one of which was water (whereas we had 

eight surface types). Cell size was 60 cm and the 

reference data were collected by visual interpretation 

of the same images that were used in the analyses, 

which may have influenced the validity of the 

reported performance metrics. We did not try 

different sensors or acquisition settings. It is likely 

that LiDAR features will be blurred at lower pulse 

densities or by larger footprints. We considered 

additional imaging by UAVs, but the relatively large 

area and the remote location set the costs too high. 

UAV photogrammetry, if it replaces the LiDAR data 

in 3D modelling, will require a dense network of 

elevation control. While manned platforms are 

efficient, low-altitude photogrammetry combined 

with field surveying may well be a viable option in 

smaller areas. However, improving the DEM 

accuracy from the 2−3-cm level will be challenging 

using imagery without excessive efforts in the field, 

as exceedingly accurate direct georeferencing 

(GNSS-aided inertial navigation) is currently 

expensive for UAVs. 

We tested three classifiers. The kNN-method was 

outperformed by LDA and RF, as was also reported 

for mire habitat classification (Korpela et al. 2009). 
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We applied pixel-based classification and omitted 

spatial dependencies as we had no exact data about 

the neighbourhood connections. For example, 

Haapanen & Tokola (2007) employed the sequential 

maximum a posteriori (SMAP) classification to 

Landsat TM data and reported improved mire habitat 

classification results with SMAP compared to 

ordinary maximum likelihood. Conditional random 

fields are state-of-the-art methods that can be used for 

contextual labelling of scene points such that spatial 

dependencies are considered (e.g. Niemeyer et al. 

2013). However, the neighbourhood relations of 

microforms are complex compared to rules that can 

be applied in labelling targets in, for example, urban 

environments. 

The classification accuracies obtained were 

reasonable, considering the 'botanical overlap' of 

some classes. However, an accuracy below 80 % 

does not provide a very realiable basis for directly 

observing subtle microform changes at the 

distribution level. Comparisons and GIS-analyses of 

the current DEM and image features with future data 

will be more interesting when all multi-temporal data 

are accurately co-registered. It is worth noting that we 

delineated the pools manually. In many cases there 

were no LiDAR data from water and the pools 

showed as dark surfaces in the images, except for 

occasional sun glints. The labelling in the map was 

topologically sound with e.g. water being 

neighboured by mud-bottom hollow, hollow or lawn. 

Unfortunately, we have not yet been able to complete 

our (ongoing) evaluation of the map’s utility for up-

scaling greenhouse gas flux measurements and/or 

estimating the footprint of the EC tower. 

Our LiDAR sensor was a single-band device that 

operated at 1550 nm. This wavelength is more 

efficient for detecting wetness differences than the 

other commonly available wavelengths of 1064 and 

532 nm. The low flying resulted in narrow footprint 

data, which is beneficial for elevation modelling, as 

the elevation represents a weighted average of the 

footprint. Similarly, the backscattering occurred from 

a small area for which the coordinates were accurate. 

Multi-band LiDAR sensors are entering the market 

and constitute an interesting future option for data 

acquisition. Advances in the receiver design 

(sensitivity improvements) of pulsed LiDAR sensors 

are also anticipated (photon-counting). These 

techniques may help in detecting trees (weak 

backscattering) and the shrub-layer. 

The RGB camera with the Bayes-filter is not 

comparable with state-of-the-art photogrammetric 

sensors which have narrower bands, small pixels, 

radiometric calibration and stable geometry, and 

which enable multi-view analyses. Hyperspectral 

sensors would provide more radiometric information 

but that usually comes at a cost, i.e. with larger pixels 

and monoscopic data. On the other hand, their one-

dimensional view geometry is favourable as it 

simplifies the modelling of directional effects 

(Schaepman-Strub et al. 2006, Korpela et al. 2011, 

Koukal & Atzberger 2012). 

The airborne data were acquired in early summer, 

which may have been suboptimal, as there were very 

few green field-layer plants. On the other hand, the 

Sphagnum mosses, with more distinguishable colours 

than vascular plants, were well visible. 

The maps, field samples and LiDAR data are 

interesting sources of information for long term 

monitoring of the site. The cost of such data is 

0.05−0.25 € m-2 depending mainly on the size of the 

area and the number of airborne acquisitions. In 

Finland, the GNSS infrastructure is excellent, which 

is not self-evident in many parts of the world. Our 

AOI was a sparsely forested ombrotrophic bog. We 

also see potential in using the methodology in fen 

vegetation, where the WF LiDAR data can find wet 

microforms and capture the relatively low 

topographic variation, and the echo width may help 

in differentiating sedge stands of varying species, 

size and density. 

 

 

CONCLUSIONS 

 

Based on the results we conclude: 

• Fusion of airborne LiDAR and images is well 

suited for sparsely forested and open bogs, as the 

shading and occlusion by trees has a lesser effect. 

• High-density LiDAR captures the topographic 

variations in the resulting elevation model and 

DEM features are efficient predictors of the 

microforms. 

• WF data help in finding trees that are hardly 

discernible in images owing to their sparse 

foliage. WF can be used to constrain the LiDAR 

data to ‘radiometrically intact’ pulses that contain 

full energy at the bog surface, which makes 

intensity data more reliable. 

• Echo width feature responded to surface 

roughness and dense field layer vegetation. 

• Shortwave-infrared LiDAR intensity varied from 

no-data in water to strong echoes in the hummock 

vegetation and constitutes a good predictor of 

surface wetness. 

Directional reflectance anisotropy depended on the 

surface type and especially on the presence of shrubs 
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and other field layer vegetation that contribute to 

shadow casting. It probably will be possible to 

slightly enhance the classification results obtained by 

using microform- and band-specific ‘anisotropy 

prototypes’ which are contrasted against the 

observations in multiple images. 

The 3D fusion of LiDAR and image data 

employed here comprises a promising approach, 

which can be developed further by using 

radiometrically more advanced imaging sensors, 

along with more careful data acquisition in which 

aspects such as image motion blur, geometric control 

and objective sampling of the field data are 

considered. 
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