
 
Mires and Peat, Volume 27 (2021), Article 07, 18 pp., http://www.mires-and-peat.net/, ISSN 1819-754X 

International Mire Conservation Group and International Peatland Society, DOI: 10.19189/MaP.2020.BG.StA.1991 
 

                                                                                                                                                                         1 

Carbon stocks and their spatial distribution in drained and rewetted 
peatland forests in a low mountain range area, Germany 

 
Jan Paul Krüger1, Markus Dotterweich1, Angelika Seifert-Schäfer1, Svenja Hoffmann1, Christoph Kopf 2, 

Christof Kneisel3, Sandra Dotzler4, Sascha Nink4, Johannes Stoffels4, Gebhard Schüler5 
 

1 UDATA GmbH Environment & Education, Neustadt/Weinstrasse, Germany 
2 Central Office of Forestry, State Office Rhineland-Palatinate, Neustadt/Weinstrasse, Germany 

3 Institute of Geography and Geology, University of Würzburg, Würzburg, Germany 
4 Environmental Remote Sensing and Geoinformatics, University of Trier, Trier, Germany 

5 Research Institute for Forest Ecology and Forestry, State Office Rhineland-Palatinate, Trippstadt, Germany 
_______________________________________________________________________________________ 
 
SUMMARY 
 
Drainage and rewetting of peatlands changes their carbon (C) dynamics. We measured C stocks in the soil and 
biomass of drained and rewetted peatland forests in the region of the National Park Hunsrück-Hochwald, 
Germany. A detailed soil map was produced, showing the important soil properties for soil C stocks. Based on 
the horizon-substrate combination as well as LiDAR data, the spatial distribution of soil and forest C stocks 
was analysed. Our results show that our peatland sites have shallow soils with a heterogeneous spatial 
distribution. Mean (± SE) soil C stocks in the monitoring sites are 121(± 8) t ha-1 whereas the forest stores on 
average 71(± 0.2) t ha-1 of C in the biomass. Tree removal in the drained peatlands reduced the total C stocks 
by 4,430 t. The quality and longevity of the wood products that arise from tree removal will determine whether 
or not the harvested portion of the C captured by the trees is sequestered over long timescales. 
Additionally, the success of rewetting activities and the potential soil carbon sequestration or (non-) soil carbon 
loss will determine whether these ecosystems are carbon sinks or sources. An extrapolation of our data resulted 
in estimated C stocks of 171,530 t and 544,282 t for peatland soils and for the spruce forest, respectively, for 
the whole area of the National Park (about 10,000 ha). 
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INTRODUCTION 
 
Peatlands contain more than 600 Pg of carbon (C) in 
their soils and are important in the context of the 
global C cycle (Yu et al. 2011, Jungkunst et al. 2012, 
Dargie et al. 2017, Nichols & Peteet 2019). Peat 
formation occurs when plant material does not fully 
decompose in water-saturated anaerobic conditions. 
Drainage of peatlands leads to aerobic conditions in 
the soil resulting in increased decomposition of 
organic material and a loss of C from the soil to the 
atmosphere. In central Europe a large proportion of 
the peatland area is drained and used for agriculture 
or forestry management (Joosten & Clarke 2002, 
Christensen & Friborg 2004, Jungkunst et al. 2018). 
Germany has a peatland area equal to about 3.5 % of 
the country area, but only about 2 % of this peatland 
area remains in a natural state (Tanneberger et al. 
2017). Depending on land use and land management, 
these soils emit various quantities of greenhouse 
gases (Drösler et al. 2013, IPCC 2014, Tiemeyer et 
al. 2016). Drained peatlands are responsible for 
approximately 5 % of the national greenhouse gas 

emissions in Germany (Strogies & Gniffke 2014). 
For several decades, peatland rewetting has become 
a widespread management tool in formerly utilised 
peatlands with the aim of restoring their natural 
function, and thereby also reducing greenhouse gas 
emissions (Tanneberger & Wichtmann 2011). 
Carbon sequestration and the avoidance of 
greenhouse gas emissions via peatland restoration are 
efficient and relatively low-cost mitigation measures 
(Leifeld & Menichetti 2018, Humpenöder et al. 2020). 

Most studies have focussed on the greenhouse gas 
exchange of peatlands measured by the chamber 
or eddy covariance method (e.g. Drösler et al. 2013, 
Hommeltenberg et al. 2014). Others analysed the 
C stocks of peatlands including calculations of 
C losses and gains, respectively, by comparing 
natural and drained peatland sites (Pitkänen et al. 
2013, Krüger et al. 2016). Another approach is 
to compare present-day and historical peatland 
C stocks with the so-called re-sampling method 
(Simola et al. 2012). However, only a few studies 
have included C stocks of both soils and trees for 
peatland ecosystems (Minkkinen et al. 1999). 
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In recent years, there has been an increased 
research effort looking at organic soils and their 
C balance. In Germany the focus has mainly been on 
peatlands and their greenhouse gas exchange under 
grassland or agricultural use (Beetz et al. 2013, 
Drösler et al. 2013, Tiemeyer et al. 2016). 
The C dynamics of peatlands under forestry use were 
mainly studied in the boreal region (Minkkinen et al. 
2002, Ojanen et al. 2017, Minkkinen et al. 2018). 
Only limited work has been carried out on peatlands 
occurring under temperate forest (Hommeltenberg et 
al. 2014, Sloan et al. 2018). In the low mountain 
range areas of Rhineland-Palatinate, Germany, slope 
peatlands have been drained since the early 
19th century using drainage ditches. These drainage 
activities were adopted to prepare for the plantation 
of spruce forests on soils with peat layers. In the last 
decade, restoration activities including closing 
drainage ditches and spruce tree removal have started 
to rewet these slope peatlands (EU-Life Project). 
Prior to the present study, no data existed on 
the spatial distribution of slope peatlands and their 
C stocks in the low mountain range areas of 
Rhineland-Palatinate.  

As such, we identified three main objectives with 
the aim of obtaining more detailed information on 
C stocks of slope peatland forests and their spatial 
distribution: a) Calculate the complete C stock of the 
peatlands including organic layers, soil and biomass 
of the spruce forest; b) Compare the C lost by tree 
removal/thinning with existing C stocks; 
c) Extrapolate the measured data to the whole 
National Park region (to estimate the importance of 
the total C pool of organic layers, soils and spruce 
forests from slope peatlands in the National Park). 
 
 
METHODS 
 
Study sites 
The National Park Hunsrück-Hochwald is located in 
Rhineland-Palatinate and Saarland in southwestern 
Germany (Figure 1) and covers about 10,000 ha. 
The  Hunsrück-Hochwald National Park lies in 
a  transitional zone between oceanic and continental 
climate. The annual average temperature is between 
7.0 and 10.0 °C. Average precipitation is between 
600 and 1,200 mm in the year with a weakly 
developed precipitation maximum in the winter 
months. The climate type is influenced by altitude 
and position in the windward or leeward part of the 
mountain range. From the valley locations with 
annual precipitation of 800 mm, these rise to over 
1200 mm in the mountain ridges of the National Park. 
The Rhenish Slate Mountains originated between 419 

and 299 million years ago. The Hunsrück in the 
National Park area thus shows rock series of the so-
called Rhenoherzynikum, which has unfolded from 
southwest to northeast in the course of the Variscan 
mountain formation (Walter 2007).  
 
Soils 
Taunus quartzite alternating with Devonian 
Hunsrück slates are the geological parent material for 
soil formation in the National Park. Today, podsolic 
terrestrial brown soils more or less dominate with 
a tendency to gleyic soils with solifluidal loam 
layers. Thus, in the case of discontinuity of the soil 
pore systems, various interflow levels have 
developed in addition to the interflow pathways in the 
deeper soil layers. In slopes where interflow or return 
flow outcrops in sources, the main and middle layers 
were occasionally eroded down to the base layer. 
Depending on the severity and duration of water 
saturation in the soil, hydromorphic substrates within 
gleyic boggy soils, spring peatlands and slope 
peatlands have developed. In the National Park these 
spring peatlands and slope peatlands are very special 
and unique compared to other European low 
mountain ranges (Reichert 1975, Schüler 2012). 
They are fed by spring water and interflow (Ruthsatz 
1999). Only when spring water and surface runoff 
permanently moisten organic layers does peat 
develop on a small scale with varying thickness.  
 
Hydrogeography/runoff 
A direct ecological influence on the near-surface soil 
water balance, as well as on the water balance of 
forests and slope peatlands, is exerted by the 
intensive development of roads built in the past to 
enable forestry management, and the deep 
accompanying ditches and culverts for draining the 
collected water. Deep unnatural erosion phenomena 
can be observed here. This can only be remedied by 
closing all culverts. Where it appears necessary to 
avoid waterlogging and uncontrolled overflow over 
forest roads, infiltration substructures can replace 
pipe culverts and thus reduce negative ecological 
effects (Backes et al. 2007). 
 
Forest stands 
On wet sites (1,875 ha), coniferous stands account for 
the largest proportion of the area at 68.8 % (1,291 ha), 
with 64.8 % (1,216 ha) of dominating spruce (Picea 
abies). The spruce is often mixed with beech (Fagus 
sylvatica) and alder (Alnus glutinosa). On medium 
water-supplied forest sites (8,252 ha), beech stands 
represent 54.4 % (4,489 ha) of the area. These beech 
stands are often accompanied by conifers, mainly 
spruce and more frequently Douglas fir (Pseudotsuga 
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Figure 1. Map of the Hunsrück-Hochwald National Park. (Lamprecht et al. 2020). 

 
 
menziesii), larch (Larix decidua) and fir (Abies sp.). 
The group of dry sites cover 44.2 ha and 
80.1 % (35.4 ha) of beech stands. The dry beech 
forests (44.2 ha) are largely accompanied by oak and 
often by birch, maple and spruce. Potential slope 
peatlands sites can be found in the wet site group, 
which occupies 18.4 % (1,875 ha) of the National 
Park area. In addition to birch fen forests, alder 
forests and spring forest sites, this group also 
includes black alder swamp forests, riverbank forests 
or areas with a very high influence of groundwater 
and surface water (Wahl & Bushard 2014).  

Monitoring sites 
Five monitoring sites on peatlands (here slope 
peatlands) were established in 2016 in the National 
Park Hunsrück-Hochwald. The five monitoring sites 
have different characteristics regarding drainage and 
rewetting as well as tree removal activities (Table 1). 
Most of these monitoring sites have a close grid of 
drainage channels which were dug in the 19th century 
for plantation of spruce forests, with approximately 
250 m of drainage channels ha-1 in some areas. Since 
2015, rewetting activities such as closing drainage 
channels   and   felling   trees   (tree   removal)   were 
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Table 1. Characteristics of monitoring sites. Brackets indicate small parts of the peatland for rewetting 
activities or tree removal/thinning, or a less pronounced drainage ditches density. 
 

Site Area 
(ha) Slope/aspect Drainage 

ditches Rewetting Tree removal/ 
thinning 

Thranenbruch 81.3 3.6° / south yes yes yes 

Riedbruch 33.9 3.8° / south-east (yes) (yes) (yes) 

Thierchbruch 14.1 7.5° / south-east yes yes (yes) 

Langbruch 19.9 6.1° / south (no) no no 

Johannenbruch 50.9 3.5° / south yes no no 
 
 
undertaken in some peatlands of the National Park 
Hunsrück-Hochwald. 
 
Soil mapping and soil analyses 
Between 2015 and 2018, a comprehensive soil map, 
according to the German soil classification (KA5), 
was produced for each monitoring site (AG Boden 
2005). The soil colour, structure and texture were 
analysed in the field for each soil horizon. In total 25 
soil profiles, representing the range of peatland soil 
types in this region, were sampled and analysed in 
detail. Soil samples were analysed for important soil 
properties like C content (elemental analysis 
according to the DIN ISO 10694) and bulk density 
(sampling ring with drying and weighing) in the 
laboratory of the State Office for Geology and 
Mining Rhineland-Palatinate. Additionally the 
degree of peat humification (H1–H10) was 
determined according to the von Post scale (von Post 
1922). In the von Post scale, a greater number 
corresponds to a higher degree of decomposition.  

For a far-reaching spatial analysis of the C storage 
of the organic soils, we applied a horizon-substrate 
combination (Bauriegel 2005, Zauft et al. 2010). 
Based on peat substrates, peat development stages 
and degree of decomposition of the different horizon-
substrate combinations were characterised 
(www.carbstor.de). The partitioning of the soil data 
into individual horizon-substrate combinations 
allowed the creation of new idealised profiles out of 
the existing chemical and physical soil data. The soil 
shape files and the idealised soil profiles enable their 
use at a higher spatial scale for the whole area of the 
monitoring sites. 
 
Data acquisition and data processing 
Data and maps, which we used in the calculations, 
were compiled from state authorities, the National 
Park Office and the forestry department. The 
waterlogging map from the forest location mapping 

was used for the extrapolation from the monitoring 
sites to the whole area of the National Park Hunsrück-
Hochwald. This map defined the waterlogging stages 
of the upper soil layers. The stages are defined from 
s2 to s6. From s4 to s6 the soil is influenced by the 
backwater or groundwater for 4 to 7 months (s4), 7 to 
10 months (s5) and more than 10 months per year 
(s6). This was the only (soil-) map of this region 
covering the monitoring sites as well as the whole 
region of the National Park. 
 
C stock calculation and extrapolation 
Carbon stock (t ha-1) calculations were accomplished 
using the following soil properties: bulk 
density (g cm-3), C content (%) and thickness of the 
soil horizon (cm). Based on relative C stocks and 
peatland area total C stocks of the monitoring sites 
were calculated.  

The extrapolation was done based on the 
monitoring sites and the waterlogging map. For each 
waterlogging stage, which is influenced by 
backwater or groundwater, at the monitoring sites a 
relative C stock (t ha-1) was calculated (Table 2). 
These data were used for other parts of the National 
Park that were covered by the waterlogging map, but 
not by the monitoring sites. Based on these calculated 
C stocks an estimate of the total C stock of the 
peatlands in the National Park Hunsrück-Hochwald 
could be calculated. 
 
Calculation of forest carbon stocks  
Up-to-date spatial information about the type,spatial 
distribution, and timber volume of forests is 
an essential element in both sustainable forest 
management and environmental monitoring. Remote 
sensing data can provide valuable contributions to 
these information needs. 

Timber volume as a central attribute of forest 
inventory includes all living tree stems greater than 
10 cm diameter at breast height  (DBH)  (FAO 2010).
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Table 2. Weighted mean (± SE) carbon stocks (t ha-1) of waterlogging stages (s4, s5, s6) of the soils at 
monitoring sites. S4 corresponds to 4 to 7 months of waterlogging conditions in the upper soil, s5 7 to 10 
months and s6 more than 10 months. 
 

Peatland s4 
(4–7 months) 

s5 
(7–10 months) 

s6 
(> 10 months) 

Johannenbruch 1.10±22 70.0±149 n/a 

Riedbruch 189±17 n/a 322±16 

Thierchbruch 157±17 205±23 411±35 

Thranenbruch 68.0±15 220±28 326±44 

Langbruch 178±30 204±30 327±32 

All monitoring sites 67.0±10 214±15 327±13 
   Explanation: n/a – not applicable 
 
 
The main variables for the calculation of single tree 
stem volume are tree type, tree height (h) and DBH 
(Zianis et al. 2005). However, for the spatially 
extensive mapping of timber volume using airborne 
or satellite-based remote sensing data, calculations 
considering only single-tree stem volume are not 
viable. Instead, timber volume is usually calculated 
per unit area in m³ ha-1. The calculation takes 
advantage of correlated variables such as forest stand 
height, derived from LiDAR data or spectral 
reflectance in certain wavelengths for passive optical 
information. The latter is not directly correlated to 
timber volume, but it takes advantage of the forest 
structure at certain developmental stages and its 
influence on the reflectance in the near-infrared 
spectral range (Nink et al. 2015). Regarding the 
availability of LiDAR data, the advantage of a direct 
correlation between forest stand height and stem-
volume can be used, such as that presented in Figure 2. 

The LiDAR data was acquired between 24 March 
and 07 April 2015 using a Riegl Q560 on an airborne 
platform. The sensor altitude was 600 m above the 
ground according to GPS data. The full waveform 
raw data consist of 17 points m-2 on average with a 
total of 10.3 × 109 points. The point-cloud-data has 
been transformed to rasterised images with a spatial 
resolution of 1  ×  1 metre, providing a digital 
elevation model (DEM) and a digital surface model 
(DSM) of the study area. A normalised difference 
model was calculated from the DSM and DEM, 
providing the forest stand height. For further 
processing, the data were resampled to a pixel size of 
5 × 5 metres, which roughly corresponds to the crown 
diameter of full-grown Norway spruce (Picea abies) 
trees. Forest stand heights up to 34 m with a mean 
value of 16.3 m and a standard deviation of 7.2 m 

were obtained. 
Since focus of the present study was coniferous 

forests, an up-to-date forest type map was applied on 
the normalised difference model to mask out 
deciduous forest and non-forest areas. The forest type 
map was derived using a supervised classification 
approach based on boosted decision trees. Utilising 
a combination of spectral information and texture 
features of aerial imagery, deciduous and coniferous 
forest types could be separated with an overall 
accuracy of 93.2 % ± 0.1 (Haß 2015). 

The reference data to which the forest stand height 
is related to is provided by the forest authorities of 
Rhineland-Palatinate. It was acquired by expert 
terrestrial inventory assessments in 2016 
(Peerenboom et al. 2003). The data are related to 
forest management units (FMUs) and includes 
volume information and reference area for each 
forest stand within the respective FMU. The data 
allow the derivation of timber volume per hectare for 
each forest stand. Because some FMUs consist of 
more than one forest stand, only suitable data where 
the information can be firmly linked were selected as 
reference (n = 173). 

For the construction of a reference database, the 
centre points of suitable FMUs were used to extract 
the corresponding LiDAR derived forest stand 
height. Although image data have been resampled to 
a five by five metre ground resolution, single gaps at 
the sampling points can have a significant influence 
on the value of the extracted tree height. Thus, 
a kernel (three by three pixels, median and maximum 
filter) was applied for the sampling of LiDAR data. 
For the spatially explicit mapping of timber volume - 
based only on forest stand height as the explanatory 
variable  -  the k-Nearest-Neighbours (k-NN) method 
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Figure 2. Correlation between LiDAR derived forest stand height and timber volume using the median from 
a sampling kernel (grey points) and the maximum value from inside a sampling kernel (black points). 

 
 
is an appropriate method. One main advantage of the 
non-parametric method is that it does not necessarily 
depend on a normal distribution in the reference data. 
The method has been widely used in forestry for the 
mapping of different attributes such as forest type, 
biomass or timber volume on local (Latifi et al. 
2010), regional (Fazakas et al. 1999, Nilsson et al. 
2005) and national scales (Reese et al. 2003, 
McRoberts & Tomppo 2007, Tomppo et al. 2012). 
The reference data, which now include the 
explanatory and response variables, was first used as 
a training set for parameterisation (the optimal 
number of neighbours “k” and its weighting factors) 
using Leave-one-out cross-validation (Gong 1986). 
Based on that as well as on the reference data, the 
calculation of the estimated value for each pixel in 
the image first uses the Euclidean distance from 
image pixel to reference elements. 
 

𝑑𝑑𝑝𝑝,𝑝𝑝𝑖𝑖 =  ��(𝑥𝑥𝑝𝑝,𝑗𝑗 − 𝑥𝑥𝑝𝑝𝑖𝑖,𝑗𝑗 
𝑛𝑛𝑛𝑛

𝑗𝑗=1

)² 

 
 

 [1] 
 

  
Where nc is the number of explanatory variables (in 
our case height information is the only explaining 
variable). 𝑥𝑥𝑝𝑝𝑖𝑖,𝑗𝑗 is the image pixel information with 
unknown response value for the j-th explanatory 
variable and 𝑥𝑥𝑝𝑝,𝑗𝑗 is the spectral information of the 
reference element p in the j-th explanatory variable. 

Each element from the reference data is assigned 
a weighting factor: 
 

𝑤𝑤𝑝𝑝,𝑝𝑝𝑖𝑖 =  
1

𝑑𝑑𝑝𝑝𝑖𝑖,𝑝𝑝
𝑡𝑡 �

1
𝑑𝑑𝑝𝑝𝑖𝑖,𝑝𝑝
𝑡𝑡

𝑘𝑘

𝑖𝑖=1

�  
  

[2] 

 
where 𝑑𝑑𝑝𝑝𝑖𝑖,𝑝𝑝

𝑡𝑡  is the distance of the i-th element in 
reference data calculated in Equation 1. t, t={0,1,2}, 
influences the weighting factor in the effect, that the 
higher the exponent is, reference elements with 
a closer distance to the estimation pixel in feature 
space will get assigned a higher weighting factor. The 
sum of all k weighting factors is one.  

The response value (𝑦𝑦𝑝𝑝�) is finally calculated as 
a linear combination of the weighting factors 𝑤𝑤𝑝𝑝,𝑝𝑝𝑖𝑖 
and the response values 𝑦𝑦𝑝𝑝𝑖𝑖 of the k nearest elements 
of the reference dataset. 
 

𝑦𝑦𝑝𝑝� =  �𝑤𝑤𝑝𝑝,𝑝𝑝𝑖𝑖

𝑘𝑘

𝑖𝑖=1
 𝑦𝑦𝑝𝑝𝑖𝑖 

  
[3] 

The calculated data for stems were complemented 
by the data for branches, needles and brushwood 
as well as for roots. Data of the proportion for 
different compartments of the trees were used from 
the literature for spruce forests (see details in 
Jacobsen et al. 2003). Based on these data C stocks 
for all compartments of the trees were calculated. 
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Total carbon stocks are presented as sums of the 
subtotals with means and standard deviation of the 
subtotals. 
 
 
RESULTS 
 
Soil properties 
The detailed analyses of 25 soil profiles resulted in 
a large number of different soil horizons according to 
the German soil classification (AG Boden 2005). 
Main soil types of the slope peatlands in the National 
Park are Sapric Histosols, Gleysols, or Histic 

Gleysols with several different subtypes. Most of the 
soil horizons were classified as transition peat with 
organic C contents between 10 % and 45 % 
(Figure 3). 

The majority of the peat horizons are highly 
decomposed ranging from H6 to H10 according to 
the von Post scale (von Post 1922) (Figure 3). With 
increasing degree of decomposition, the organic 
C content decreases. The bulk density (median) 
increases from about 0.06 g m-3 in slightly 
decomposed horizons (von Post H1–H2) to 0.23 g m-3 
for strongly decomposed (von Post H9–H10) organic 
horizons (Figure 4). 

 
 

 
 
Figure 3. Organic carbon content versus degree of decomposition of the investigated soil profiles. Boxplot 
showing median, interquartile range, minimum and maximum of organic carbon content versus degree of 
decomposition. 

 
 

 
 
Figure 4. Bulk density versus degree of decomposition of the investigated soil profiles. Boxplot showing 
median, interquartile range, minimum and maximum of bulk density versus degree of decomposition. 
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Soil carbon stocks 
The detailed soil mapping at the monitoring sites in 
the National Park Hunsrück-Hochwald showed a 
heterogenic distribution of organic soils and their C 
stocks. The organic soils are shallow (typically 
between 0.4 and 0.6 m) with a maximum thickness of 
1.1 m. Large areas of the monitoring sites show C 
stocks of 0 to 200 t ha-1 (Figure 5). However, small 
areas indicate C stocks up to 800 t ha-1. The highest 
mean (± SE) C stock of all the monitoring sites was 
found at Riedbruch with an estimated 234 (± 3) t ha-1 
and the lowest at Johannenbruch with 2 (± 4) t ha-1. 
At Johannebruch there are only small areas of peatland 
soil, and mineral soils predominate. The mean C 
stock of all five monitoring sites is 121 (± 8) t ha-1. 
 
Timber volume  
Because the forest is not a homogeneous area, 
reference data sampling comprised image data 
resampling (1–5 m ground resolution) as well 
as kernel-based sampling. More appropriate 
reference data were obtained using the maximum 
filter. The coefficient of determination between 
forest stand height and timber volume increased from 
0.41 to 0.67. The reference data values ranged from 
3.70 m to 31.7 m in the median mask derived 

reference dataset and 10.6 m to 35.2 m in the 
maximum filter derived set, with mean values of 18.6 
m (median filter sampling) and 23.9 m (maximum 
filter sampling) and standard deviations of 5.4 m 
(median filter sampling) and 4.6 m (maximum filter 
sampling). The data are normally distributed (Shapiro-
Wilk’s p = 0.89). Timber volume in the reference 
dataset ranged from 18 to 622 m³ ha-1, but it is not 
normally distributed (Shapiro-Wilk’s p = 0.03).  

The timber volume map presents a detailed 
overview of the volume distribution of Norway 
spruce areas (Figure 6). A number of three nearest 
neighbours with inverse weighting of the distance 
was sufficient to provide the best results with 
a RMSE of 25 %. 
 
Forest carbon stocks 
The spatial distribution of spruce forest C stocks 
show values between 0 and 160 t ha-1 with highest 
values in the peatland Thranenbruch and lowest in the 
peatland Langbruch (Figure 7). Mean (± SE) C stocks 
of spruce forests are 82 (± 0.4) t ha-1 for 
Thranenbruch and 51 (± 0.6) t ha-1 for Langbruch. On 
average the C stocks of spruce forest at monitoring 
sites are 71 (± 0.2) t ha-1. Detailed total carbon stocks 
are presented in Table 3. 

 
 

 
 
Figure 5. Distribution of soil carbon stocks at monitoring sites. 
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Figure 6. Distribution of k-NN derived Norway spruce volume in the National Park Hunsrück-Hochwald. 
The inlay shows the now deforested area near Thranenweier (49° 72’ N, 7° 11’ E).  

 
 
 
 

 
 
Figure 7. Distribution of spruce forest carbon stocks at monitoring sites before and after tree removal. Red 
areas indicate tree removal with loss of biomass carbon and leaving roots (C-stocks of roots) on the sites. 
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Table 3. Total carbon stocks (mean (± SD) of subtotals) of soils, roots, stems and branches before and after tree removal at the monitoring sites. The soil and root C 
stock were assumed not to have altered substantially. 
 

Peatland Soil C stock (t) Root C stock (t) 

Before 2015 After 2018 

Stem C stock (t) Branches, needles, 
brushwood C stock (t) Stem C stock (t) Branches, needles, 

brushwood C stock [t] 

Thranenbruch 11,286  
(155±414) n=73 884  

(0.06±0.03) n=15,354 3,143  
(0.20±0.11) n=15,354 1,486  

(0.10±0.05) n=15,354 473  
(0.14±0.09) n=3,815 223  

(0.06±0.04) n=3,815 

Riedbruch 7958 
(38±42) n=211 281 

(0.04±0.02) n=6,656 998  
(0.15±0.08) n=6,656 472  

(0.07±0.04) n=6,656 725  
(0.15±0.08) n=4,782 343  

(0.07±0.04) n=4,782 

Thierchbruch 1,762  
(13±16) n=135 147  

(0.05±0.02) n=2,734 523  
(0.19±0.08) n=2,734 247  

(0.09±0.04) n=2,734 458  
(0.19±0.08) n=2,371 217  

(0.08±0.04) n=2,371 

Langbruch 3,218  
(51±157) n=63 90  

(0.04±0.02) n=2,512 319  
(0.13±0.08) n=2,512 151  

(0.06±0.04) n=2,512 319  
(0.13±0.08) n=2,512 151  

(0.06±0.04) n=2,512 

Johannenbruch 77  
(11±11) n=7 342  

(0.04±0.02) n=7,824 1,216  
(0.16±0.08) n=7,824 575  

(0.07±0.04) n=7,824 1,216  
(0.16±0.08) n=7,824 575  

(0.07±0.04) n=7,824 

Total 24,300  
(50±177) n=489 1.744  

(0.05±0.03) n=35,080 6,200  
(0.18±0.10) n=35,080 2,931  

(0.08±0.05) n=35,080 3,192  
(0.15±0.08) n=21,250 1509  

(0.07±0.04) n=21,250 
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During the restoration programme, most of the 
spruce forests were felled. All parts of the trees except 
roots and stumps were taken away from the monitoring 
sites, leaving the roots C pool on the sites (Figure 8). 
 
Total carbon stocks  
The total soil C stock of the five monitoring sites is 
about 24,300 t (mean ± SD of subtotals 50 ± 177) with 
almost half of the soil C stock stored in the 
Thranenbruch peatland (Table 3). The spruce forest 
stored about 10,875 t (mean of subtotals 0.16 ± 0.15) 
in the vegetation (including roots and branches, and 
other above ground biomass) prior to thinning and 
tree removal. After tree removal, this was reduced to 
about 6,445 t of C (mean of subtotals 0.23 ± 0.13) in 
the spruce forest. 

At three monitoring sites (Thranenbruch, 
Riedbruch and Thierchbruch) removal of spruce 
forest was done as part of peatland restoration 
activities. At these three monitoring sites about 54 ha 

were thinned (corresponding to about 41 % of the 
total area at these sites). The tree removal process 
reduces the aboveground C stocks in the spruce 
forests by about 50 %, and as a result approximately 
4,430 t (mean of subtotals 0.32 ± 0.15) were exported 
from the monitoring sites (Figure 8). As the roots 
were left on the sites and we expected no changes of 
soil C stocks due to tree removal activities, these 
pools were assumed to have remained stable between 
the years 2015 and 2018. Prior to tree removal at the 
monitoring sites, about one third of the total C stock 
was stored in the forest and two thirds in the soil. 
After the tree removal, proportionally more C was 
held in the soil pool (Figure 8). 

Extrapolation of the soil C stocks from the 
monitoring sites to the area of the whole National 
Park leads to an estimate of 171,530 t of C in the 
peatland soils including peaty mineral soils 
(Figure 9). The spruce forest of the National Park 
contains an estimated 544,282 t of C as biomass. 

 
 
 

 
 
Figure 8. Total carbon stocks from monitoring sites of peatland forests before (left) and after the tree removal 
(right). 
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Figure 9. Extrapolation map of soil carbon stocks at the National Park Hunsrück-Hochwald. 

 
 
DISCUSSION 
 
Soil properties 
Soil properties of the investigated soil profiles are in 
the range of other natural and drained peatlands from 
temperate regions (Loisel et al. 2014). However most 
of the peat is strongly decomposed with the degree of 
humification ranging from H6–H10 (von Post 1922). 
This likely reflects the influence of drainage 
activities on the rate of decomposition of the peat 
organic matter; there is an inferred loss of organic 
material due to oxidation and mineralisation of peat 
substrates. This is suggested by the increasing degree 
of decomposition with decreasing organic matter 
contents (Figure 4). Organic C contents from 40 to 
45 % in slightly decomposed and 30 to 40 % in 
strongly decomposed peat material are low compared 
to other peatlands under forestry use (Wüst-Galley et 
al. 2016). A comparison of organic C content and 
degree of decomposition from the study by Roßkopf 
et al. (2015) showed similar values to our results. 

Bulk density values for undrained peats are 
usually below 0.10 g cm-3 (Minkkinen & Laine 1998, 
Leifeld et al. 2011, Krüger et al. 2015). Previous 
studies have shown that drainage for forestry can lead 
to an increase in bulk density, particularly in the 
upper horizons of the peat profile with typical values 
of more than 0.15 g cm-3 (Leifeld et al. 2011, Krüger 
et al. 2016). A nationwide determination of peat bulk 
densities of drained and undrained peatlands in 
Finland found a significant increase in bulk density 
down to 60 cm depth which was attributed to the 
drainage of peatlands for forestry (Minkkinen & 
Laine 1998). In Switzerland, peatlands with different 
forest types have mean bulk density values of 0.09 to 
0.13 g cm-3 (Wüst-Galley et al. 2016). Our results 
(Figure 4) are comparable to these findings as less 
decomposed peat showed lower bulk density values 
of about 0.10 g cm-3, whereas more decomposed 
peats had higher values between 0.20 and 
0.30 g cm-3. This is comparable to the findings from 
Roßkopf et al. (2015) who found increasing bulk 
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densities with increasing degree of decomposition. 
The data of Roßkopf et al. (2015) show a high degree 
of variability, but the general correlation applies to 
both fens and bogs. 
 
Soil carbon stocks 
The soil C stocks of the monitoring sites show a 
heterogeneous distribution (Figure 5). Some smaller 
parts of the monitoring sites have high C stocks, 
comparable to soil C stocks of forest peatlands in 
Switzerland investigated by Wüst-Galley et al. 
(2016). They found mean soil C stocks of 495 t ha-1 
(ranging from around 200 to 900 t ha-1) down to 1 m 
depth (Wüst-Galley et al. 2016). This can rise to a C 
stock of over 1,000 t ha-1 in deeper soils of peatland 
forests for example in Finland (Minkkinen et al. 
1999). 

C stock calculations are mainly affected by the 
values obtained for C concentrations, bulk density and 
thickness of the peat layer. Our results accord with 
other studies, in that soil C stock calculations are 
more influenced by bulk density (and thickness of the 
peat layer) than C concentrations (Krüger et al. 2015, 
Wüst-Galley et al. 2016, Glina et al. 2019). However, 
the thickness of organic soils does not correlate with 
greenhouse gas emissions, as shallow organic soils 
can emit a quantity of greenhouse gases equal to that 
of deep peat soils (Leiber-Sauheitl et al. 2014). The 
water table of a peatland is generally the main driving 
influence on greenhouse gas emissions (Moore & 
Knowles 1989). Flooded conditions during rewetting 
might cause high CH4 emissions, while fluctuating 
water tables might enhance N2O emissions (Osterloh 
et al. 2018). These organic soils can be hot spots of 
greenhouse gas emissions and can dominate the 
regional greenhouse gas budget (Jungkunst et al. 
2004, Tiemeyer et al. 2016). However, greenhouse 
gases have not been measured at these sites. This first 
detailed distribution map of soil C stocks could be 
used to return to the sites in the future, applying the 
re-sampling method (Simola et al. 2012) to enable a 
comparison of present soil C stocks and future soil C 
stocks. This allows an estimate of C losses or gains 
to be produced for the peatland soils.  

The greenhouse gas exchange of a peatland is 
crucial for determining if the peatland is a C sink or 
source. CO2 from mineralisation of the soil organic 
matter is, in most cases, the largest component of 
greenhouse gas emissions from peatland soils. 
Clearcutting and rewetting of peatlands formerly 
managed for forestry strongly affects the C dynamics 
(Mäkiranta et al. 2010, Rigney et al. 2018). The 
short-term effect of clearcutting is a strong climate 
warming effect with accelerated emissions of 
greenhouse gases turning the peatland into a large 

C source (Korkiakoski et al. 2019). Alongside the 
drastic changes in micrometeorological conditions 
and missing input by vegetation, the retention of 
logging residue increases the release of C from the 
soil organic matter store (Mäkiranta et al. 2012). 
Logging residues will decompose relatively fast, and 
may enhance the decomposition rate of the 
underlying peat soil (Mäkiranta et al., 2012). 
Rewetting of formerly used peatland forests does not 
necessary re-establish the C sink function in the short 
term (Rigney et al. 2018). Removal of all fresh 
organic matter (e.g. branches) is recommended to 
limit both CO2 emissions as a result of priming 
effects and the introduction of non-peatland species 
(Rigney et al. 2018). The greenhouse gas balance of 
these peatlands, especially of clear-cutting or thinned 
peatland forests, is still an open question. 
 
Forest carbon stocks 
Our calculated forest C stocks are substantially 
higher (mean value of 71 t ha-1 at monitoring sites 
before tree removal) compared to other drained 
peatland forest in the boreal region (Minkkinen et al. 
1999). However, compared to mineral soils, where 
spruce forests store an estimated 87 t ha-1 of C 
(Wördehoff et al. 2011), the C storage of the peatland 
forests in the present study is substantially lower. 

Other studies have shown that most boreal and 
temperate drained peatland forests act as 
contemporary C sinks (Meyer et al. 2013, Ojanen et 
al. 2013, Hommeltenberg et al. 2014), because the 
tree stand C sequestration exceeds the loss of C from 
soil. On the other hand, harvesting typically leaves 
tree stumps and roots at the site, increasing the 
soil C stock. The portion of the C captured by the 
trees that is left below ground when they are felled 
consists of roots, litter and soil organic matter derived 
from these. In addition, the stumps, branches and top 
parts of the stems are normally left on the ground 
after harvesting. 

The decomposition of this coarse woody debris in 
peat soil is slow and so leaving it at the site will 
compensate for soil C losses for several years 
(Minkkinen et al. 2018). Further, the water table will 
rise because of the removal of the transpiring tree 
stand, likely reducing peat decomposition. However, 
this reduction is probably small and the site is likely 
to be a strong C source at least for the first few years, 
after which the growing vegetation again starts to 
bind C to the ecosystem (Mäkiranta et al. 2010). 
Nevertheless, in peatlands used for forestry the soil C 
storage is important in the long term, because the tree 
stock will eventually be harvested and the C in wood 
products will gradually be lost back to the 
atmosphere (Minkkinen et al. 2018). Thus, the most 
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relevant question is whether the sites remain C sinks, 
especially the soil, in the long term if they are 
managed for forestry. 

The rewetting of peatland forests in order to re-
establish the C sink function of these ecosystems is 
a long-term approach. It requires both raising the 
water table to natural conditions and re-establishing 
typical peatland vegetation. This will increase the 
likelihood of returning the C sink function to the 
peatland. However, raising the water table might be 
a difficult task taking into account the small-scale 
heterogeneity of the subsurface at the investigated 
sites (cf. Trappe & Kneisel 2019). It is difficult to 
achieve a uniformly high water table for the whole 
peatland area, especially for peatlands with a steep 
slope. The non-native biomass should be exported 
from the rewetting sites in order to reduce the volume 
of fresh organic matter on the site and thereby limit 
CO2 emissions from the decomposition of remaining 
litter, the priming effect and possibly the introduction 
of non-peatland species (Rigney et al. 2018). 
 
Total carbon stocks 
The extrapolation of the C stocks produced a C 
storage estimate which was three times higher for the 
spruce forest compared to the soil C stocks in the 
peatlands. However, spruce forests are distributed all 
over the National Park whereas potential peatlands 
only cover about 13 % of the National Park area. This 
indicates the high C density of the peatland areas, 
especially the peatland soils. 

Any loss of C from peat soils may be offset by 
gains of C stored in tree biomass, litter and new soil 
organic matter. The true C balance then depends 
partly on the fate of the wood produced (Minkkinen 
et al. 2002). The quality and longevity of the wood 
products that arise from forestry will determine 
whether or not the harvested portion of the C captured 
by the trees is sequestered over long timescales 
(Laine et al. 1992, Ojanen et al. 2013). In areas with 
high-quality wood this timber may be used for long-
lifespan uses purposes like construction, effectively 
storing the C for many decades or even centuries 
(Sloan et al. 2018). 

In situations where rewetting activities will not 
establish high water tables and the rewetted peatland 
will remain a C source, it is possible that the most 
favourable C balance for the study site may in fact be 
reached by leaving the trees growing on the peatland 
(Rigney et al. 2018). 
 
Implications 
Peatlands, here slope peatlands, are typical landscape 
features in the National Park Hunsrück-Hochwald. 
Despite their relatively small areas and their specific 

site conditions, these peatlands store substantially 
more C unit area than mineral soils. Even the shallow 
peatlands at the monitoring sites in the present study 
store almost twice as much C in the soil as in the 
vegetation. Tree removal from these peatlands 
reduced the C stocks of the spruce forest by 4,430 t 
across the monitoring sites, however this accounts for 
less than 1 % of the spruce forest C stocks in the 
National Park Hunsrück-Hochwald. 

Small peatland areas can contribute a relatively 
large proportion of emissions to the regional 
greenhouse gas budget. Therefore, measurements of 
greenhouse gases at the rewetted sites as well as on 
the peaty mineral soils are necessary to evaluate if 
these peatlands are C sinks or sources, as their 
greenhouse gas emissions can be equal to those of 
deep peatland soils. Peatland rewetting projects 
should not only be attended by vegetation studies, but 
also by monitoring studies examining water table 
dynamics, soil C balance and biomass C, in order to 
determine changes in ecosystem-relevant factors. 
Geobotanical research with age-dating methods has 
showed that these peatlands have an age of a few 
hundred years (Kopf et al. 2019), and the 
(past/present) C accumulation (rates) of these 
peatlands should be investigated in detail. 
Furthermore, in the future a re-measurement of 
C stocks could be done applying the re-sampling 
method (Simola et al. 2012), enabling a comparison 
between our C stocks and future C stock 
measurements. Peatland forests, with their small 
area, high C density and potentially low–quality 
wood, should be managed for C storage rather than 
for timber production (Wüst-Galley et al. 2016). 
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