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_______________________________________________________________________________________ 

 

SUMMARY 

 

Quantifying historical patterns of fire regimes in peatlands can help contextualise current fire behaviour and 

aid in planning on ecosystem and landscape scales. However, current methods for detecting the evidence of 

past fires in peat soils are laborious or expensive. Our goal was to develop an effective and inexpensive method 

for detecting pyrogenic carbon (PyC) concentration in peat which could be used to estimate the occurrence of 

fires by analysis of discrete soil samples. We correlated diffuse reflectance Fourier-transform infrared 

spectrometry (FTIR) measurements of peat, and admixtures of peat and PyC, with nuclear magnetic resonance 

spectrometry (NMR) estimates of PyC concentrations. We compared two methods for modelling PyC 

concentration based on FTIR data, namely peak fitting and partial least squares regression. Peak fitting 

analyses of FTIR spectra isolated 15 unique spectral features within the peat matrices, of which five were 

statistically relevant to PyC detection. Peak-fitting and partial least squares regression modelling both reliably 

predicted peat sample PyC concentrations, though partial least squares regression needs additional work before 

a general model can be developed. Therefore, FTIR spectrometry could be used to detect the presence of past 

fire events within peat soil profiles with relatively low cost and time investment. 
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ABBREVIATIONS 

 

FTIR Fourier-Transform Infra-Red, a type of spectrometry 

DRIFT Diffuse Reflectance FTIR spectrometry 

NMR Nuclear Magnetic Resonance spectrometry 

DP Direct Polarisation, a method of NMR spectra acquisition 

CPTOSS or CP 
Cross Polarisation (with Total Spinning Sideband suppression), another method of NMR 

spectra acquisition 

PyC Pyrogenic Carbon 

PLSR Partial Least Squares Regression 

RMSE Root Mean Square Error, a measure of model accuracy 

PRESS Predicted Residual Sum of Squared Error, a measure of model predictive accuracy 
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INTRODUCTION 

 

Peatlands represent a globally significant carbon (C) 

stock containing 545–1055 Pg C (Nichols & Peteet 

2019). While these stocks generally accumulate over 

long periods of time, changes in climate and 

disturbance regimes, including increases in the extent 

and severity of wildfires, threaten the stability of 

peatland C stocks (Turetsky et al. 2015, Goldstein et 

al. 2020). Wildfires are also important in structuring 

plant communities in peatlands (Benscoter et al. 

2015) and fire has been used as a management tool in 

these ecosystems (Farage et al. 2009), though not 

without controversies (Harper et al. 2018, Ashby & 

Heinemeyer 2021). Despite the importance of fire in 

peatlands there is little information available 

regarding natural peatland fire regimes due to the 

difficulties of discerning fire frequencies in peatlands 

(cf., Kasin et al. 2013). Therefore, a quick and 

affordable method of quantifying historical fire 

patterns in peatlands would be beneficial to expand 

the depth and scope of fire research in these 

ecosystems. 

The basic method for discerning fire frequencies 

in peatlands is to identify the occurrence of pyrogenic 

carbon (PyC), also called char or black carbon (BC), 

in accumulated strata within a peat soil profile or 

nearby sediments (cf., Clark & Hussey 1996). 

Pyrogenic C encompasses a range of organic 

compounds which range from barely altered organic 

matter to completely condensed graphitic carbon 

(Goldberg 1985, Masiello 2004). There are many 

techniques that have been used for identifying PyC, 

with varying degrees of specificity and resource 

requirements (Schmidt et al. 2001, Hammes et al. 

2007). Organic soils offer a particular challenge in 

PyC detection because of chemical similarities 

between peat and the products of burning (Hedges et 

al. 2000), though some chemo-oxidative methods 

such as the modified weak nitric acid digestion (a.k.a. 

KMD) method and the dichromate oxidation + 

Soxhlet extraction methods have had success in 

isolating PyC in organic horizons (Kaal et al. 2007, 

Knicker et al. 2007, Hatten & Zabowski 2009, 

Maestrini & Miesel 2017). However, it is difficult to 

quantify artefacts from chemically and/or thermally 

oxidising methods for PyC detection in organic 

matrices (Hammes et al. 2007), and time-consuming 

laboratory procedures with toxic or otherwise 

dangerous reagents are still required. Microscopy is 

often used in palaeoecology to identify pollen and 

PyC particles in organic soils, but such studies are 

typically limited to only a few cores due to the time 

it takes to use this technique (Markgraf & Huber 

2010, Gałka et al. 2015, Crausbay et al. 2017). 

Microscopic methods have limited potential for 

analysis beyond evaluating particle morphology and 

colour, neither of which is exclusive to or necessarily 

consistent in PyC, though methods exist which 

attempt to ease the process via chemical treatments to 

deflocculate, bleach or digest sample matter to aid 

particle discrimination. Nuclear magnetic resonance 

(NMR) spectrometry is a useful method for 

identifying and quantifying PyC in organic matrixes 

such as peat (Baldock et al. 2004, Kaal et al. 2007, 

Ding & Rice 2012, Leifeld et al. 2018). However, 

NMR is expensive and time-consuming, which 

greatly limits the number of samples that can be 

processed. Benzene polycarboxylic acid (BPCA) and 

hydrogen pyrolysis (hypy) both have potential to 

work in peat soils but, like NMR and microscopy, 

have limited application due to long processing times 

(Cotrufo et al. 2016 and references within). 

In contrast to these methods, Fourier-transform 

infra-red (FTIR) spectrometry is relatively 

inexpensive to run, does not involve caustic reagents 

or complex laboratory procedures, and can have 

higher sample throughput. FTIR has been used to 

study a variety of organic materials and processes 

including wood decay (Pandey & Pitman 2003), soil 

organic matter (Chen et al. 2002, Demyan et al. 2012, 

Margenot et al. 2017, Matamala et al. 2017), peat 

decomposition, humification, and recalcitrance 

(Prasad et al. 2000, Artz et al. 2006, Artz et al. 2008, 

Hodgkins et al. 2018), pyrolysis (Guo & Bustin 1998, 

Merino et al. 2015), and PyC in upland soils 

(Nocentini et al. 2010, Cotrufo et al. 2016, Hardy et 

al. 2017). FTIR was recently used to detect PyC in 

wetland lagoon sediments (Cadd et al. 2020). Despite 

these advancements, to our knowledge FTIR has not 

yet been applied to identifying PyC in peat. In this 

study we evaluated the efficacy of FTIR 

spectrometry to quantify admixtures of PyC 

generated in peatland wildfires and hemic and sapric 

peat, as validated with NMR spectrometry. 

 

 

METHODS 

 

Admixture preparation 

We produced six sets of admixtures using three 

different sources of naturally produced PyC (to 

capture real-world PyC variability) and two peat 

sources representing shallow (recently living and 

senescent moss, 0–40 cm) and deep (humified peat, 

> 40 cm) depth classes taken from Sphagnum 

peatlands. Both types of peat were composites made 

from Sphagnum peat of the appropriate depth. 

Composites were used to incorporate characteristics 

of multiple peatlands and microforms and thereby 
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maximise the generalisability of the models. The 

surface peat was a composite of surficial Sphagnum 

that was harvested from peatlands in central Alberta 

(Bourgeau-Chavez et al. 2020). The deep peat was a 

composite of hemic to sapric Sphagnum peat that was 

harvested from peatlands in the Upper Peninsula of 

Michigan (Chimner et al. 2014). We dried the peat 

samples at 60 °C until they reached constant mass 

before grinding them in a Wiley mill. We then ground 

subsamples of the peat in a ball mill until the peat was 

pulverised. We acquired the three samples of 

naturally produced PyC from peat using forceps and 

a dissecting microscope to obtain material visually 

apparent as PyC from recent fire events. We did not 

further isolate or concentrate the PyC. The three PyC 

samples come from evident char layers found in 

northwestern Canadian peatlands (Bourgeau-Chavez 

et al. 2020), Minnesota (Potvin et al. 2015) and 

Michigan (Bess et al. 2014) peatland sites. We 

ground the PyC using a mortar and pestle and mixed 

it with the previously ball-milled peat to make 

admixture series with every combination of PyC and 

peat matrix. The admixture intervals were 0, 5, 15, 

30, 50, 75 and 100 % (visually) apparent PyC by 

mass fraction. We did not produce admixtures 

containing 75 % PyC for the Canadian char due to 

lack of material. We did not duplicate endmembers 

of 0 % PyC to avoid skewing the regression. We did 

not include the three PyC endmembers in modelling 

as, while they do represent natural chars, they had 

been separated from peat and their spectra would 

therefore not be representative of a natural char layer 

in a peat core. Furthermore, we used eight naturally 

occurring char layers from three different field sites 

in the Upper Peninsula of Michigan. The maximum 

total number of samples we used to fit models was (2 

peats (shallow, deep)) × (3 PyC sources) × (5 rates 

(5, 15, 30, 50, 75)) + (2 for shallow and deep peat 

endmembers) - (2 analyses for the two peat depths 

with no 75 % PyC Canadian char) = 30 admixtures + 

8 field samples = n = 38. 

We analysed all three natural char endmembers 

and six of the eight naturally occurring field sample 

char layers (two of the eight had insufficient sample 

mass remaining) for C, H, N and O using a Costech 

4010 Elemental Analyzer calibrated to atropine 

standard. The values presented reflect the elemental 

composition of these samples as mixtures of char and 

peat. The elemental composition is intermediate 

between condensed hydrocarbon and lignin-like 

biomolecules (Kim et al. 2003), and between high 

and low temperature chars (Sekiguchi et al. 1983), 

which reflects the products of smouldering 

combustion in a peat matrix (Figure 1). These values 

are  similar  to  those  of  macroscopic  char  particles  

 

Figure 1. The van Krevelen diagram for nine of the 

eleven natural char samples used to fit our models. 

Grey circles are natural char layers, and the black 

symbols represent the three char endmembers used 

in making the admixtures. The diamond is the 

Michigan char, the triangle is the Minnesota char, 

and the square is the Canadian char. Grey crosses 

are macroscopic char particles found in the mineral/ 

organic soil interface of boreal spruce forest sites 

in interior Alaska (Kane et al. 2007). Open circles 

are cellulosic chars produced at the stated 

temperatures (Sekiguchi et al. 1983). Both Kane 

and Sekiguchi chars are included for reference 

purposes; see also Table A1 in the Appendix. 

 

 

found in the mineral/organic soil interface of boreal 

spruce forest sites in interior Alaska (Kane et al. 2007). 

 

FTIR spectra handling 

We prepared all samples for FTIR by mixing with 

FTIR-grade KBr to 10 % sample by mass. We mixed 

samples using a small agate mortar and pestle to 

further break down the KBr crystals and mix them 

with the sample. We dried samples at 60 °C for > 24 

hours before measuring them with diffuse reflectance 

FTIR (DRIFT) using a Thermo Scientific Nicolet iS5 

spectrometer, equipped with a standard fast recovery 

deuterated triglycine sulfate (DTGS) detector and an 

iD Foundation - Diffuse accessory (Thermo Fisher 

Scientific, Ann Arbor, MI). We chose the DRIFT 

method due to the ease of sample preparation and its 

effectiveness on heterogenous samples such as peat 

(Niemeyer et al. 1992). The DRIFT method allows 

the beam to contact more of the sample than 

attenuated total reflectance (ATR), which is 

beneficial for increasing the probability of detecting 

PyC particles. The DRIFT method is also easily 
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compatible with current FTIR database efforts such 

as the USDA-funded SoilSpec4GG initiative 

(https://soilspectroscopy.org/). We produced spectra 

of the 400–4000 cm-1 range with resolution of 4 cm-1 

and a data interval of 0.5 cm-1 by averaging 64 scans. 

We used ultrapure N2 purge to further reduce the 

interference of humidity and to improve spectral 

fidelity. Automatic background correction built into 

the software further eliminated remaining atmospheric 

effects. We acquired background spectra by scanning 

KBr blank samples at least once every two hours 

when running samples, to account for changing 

atmospheric ([CO2], relative humidity) conditions. 

We used custom code written in Python to 

baseline correct and standardise the spectra to 

compare relative peak areas, rather than absolute data 

which were variable due to sample properties, 

dilution factors and atmospheric conditions during 

testing. Recognising that peaks often overlap, we 

used the peak fitting function in Origin (Origin 2019b 

64-bit, OriginLab Corporation, Northampton, MA) to 

condense the volume of data per sample by fitting 15 

Gaussian peaks to the spectral features, summarising 

those peak areas for use in modelling. This is an 

elaboration of the peak derivative measurement 

methods used by Pandey & Pitman (2003). Whereas 

that method measures peaks by drawing a line 

connecting the “bottom” side of each peak and 

integrating the area between the line and the peak, in 

contrast, peak fitting allows overlapping of peaks. 

Identification of overlapping peaks has been flagged 

as particularly important (see Heller et al. 2015) in 

the densely packed “fingerprint region” of the spectra 

(850–1875 cm-1). Peak fitting also reduces the 

number of factors that must be considered in model 

building, allowing more parsimonious statistical 

methods to be used. 

Peak fitting has been used to good effect for FTIR 

in multiple applications (Zhang et al. 2013, Gaffney 

et al. 2015, Belton et al. 2018, Gardegaront et al. 

2018, Sadat & Joye 2020). Reggente et al. (2019) 

have also shown excellent agreement between peak 

fitting and partial least squares models for FTIR data 

on atmospheric aerosols. We achieved stability by 

carefully controlling both the number of peaks to fit 

and the allowed range of variation in peak location, 

area and width. This limitation ensured repeatability 

and stability but sacrificed perfect line fitting in the 

region between 2000 and 3800 cm-1 where the shape 

of the spectrum was skewed with few distinct peaks 

(Figure 2). The three peak areas fitted in the 2000–

800 cm-1 region correlated well with their respective 

peak heights, despite the imperfect line fitting 

(Figure A1 in the Appendix). The Python script used 

to baseline correct and standardise the spectra, and 

the Origin function files used for peak fitting, are 

available in the Supplementary Material. 

 

NMR 

We used NMR data to ensure accurate PyC estimates 

for model fitting and to validate our FTIR models 

(Figure 3). The molecular mixing model developed 

by Baldock et al. (2004) is a widely accepted method 

of PyC quantification based on NMR spectrometry 

(Miesel et al. 2015, Leifeld et al. 2018). We selected 

the three “pure” char and two “pure” peat admixture 

endmembers, and a series of eight putative no char to 

putative high char unknown samples taken from three 

peat cores harvested from peatlands in the Upper 

Peninsula of Michigan for NMR analysis. In reality, 

all eight unknown samples were determined by NMR 

to contain some amount of naturally produced char 

(Table A2). 13C solid state NMR experiments were 

performed on a Varian Infinity-Plus NMR 

spectrometer equipped with a 6 mm MAS broadband 

probe operating at 399.75 MHz for 1H to determine 

the mass fraction of each sample that was composed 

of PyC. For each sample, both cross polarisation with 

total sideband suppression (CPTOSS, or CP for 

brevity) and direct polarisation (DP) were acquired 

under 6 kHz magic angle spinning. The CP data were 

acquired with 16,000 scans, a sweep width of 1000 

ppm, a contact time of 1.9 ms, an acquisition time of 

5.12 ms, and a recycle delay (d1) of 3 s. The DP data 

were acquired with 3000 scans, a sweep width of 

1000 ppm, an acquisition time of 5.12 ms, and a 

recycle delay (d1) of 100 s using a standard one-pulse 

experiment with 1H decoupling during acquisition. 

All data were processed with a 100 Hz Gaussian line 

broadening and baseline correction. The 13C chemical 

shifts were referenced against an external standard of 

adamantane. Background signal subtraction was 

performed to remove the signal from the rotor for the 

DP spectra (there was no background signal from the 

rotor for the CP spectra). We integrated spectral 

magnitude in 7 frequency ranges (0–45, 45–60, 60–

95, 95–110, 110–145, 145–165 and 165–215 ppm) to 

183 inform subsequent modelling. These methods 

followed similar studies of organic soil samples 

(Smernik et al. 2002b; Miesel et al. 2015). We 

determined total organic C and total N content via dry 

combustion on an elemental analyser (EHS 4010 gas 

chromatograph, Costech, Valencia, CA). The NMR 

spectral integrations and C and N results were used 

to calculate the composition of each sample using the 

modified Baldock molecular mixing model (Baldock 

et al. 2004). The output of this regression includes a 

char (PyC) fraction, which we used to validate the 

accuracy of our FTIR model estimates. The 

admixture PyC contents were corrected based on the 
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original mixing ratio and the NMR-determined PyC 

contents of the admixture endmembers. NMR spectra 

and molecular mixing models are available as part of 

the Supplementary Material. 

The direct polarisation NMR method requires 

long recycle delays due to the slow relaxation of 13C, 

as opposed to the CP method which uses a much 

shorter recycle delay since the relaxation is dependent 

on 1H and the relaxation time of 1H is much shorter 

than that of 13C (Mao et al. 2000). Another advantage 

of CP over DP is that the 13C signals in CP are 

enhanced by 1H via 1H-13C dipolar couplings and the 

enhancement is different for each 13C since the 

dipolar coupling is different for each 13C; as a result, 

the 13C signals in CP are not quantitative (Smernik et 

al. 2002a). As opposed to CP, DP is a more 

quantitative method to detect the more condensed 

PyC, routinely detecting > 90 % of PyC (Skjemstad 

et al. 1999, Baldock & Smernik 2002, Smernik et al. 

2002b).  Both  the  CP  and  DP  methods  have  been

 

 

 

Figure 2. Plot A shows the FTIR spectra of three prototypical samples. The PyC layer is from the Sleeper 

Lake peatland fire in Michigan, USA. The surface and deep samples are without added PyC; their origins 

are explained in the admixture preparation subsection of Methods. Plots B and C show the peak fitting 

results for the PyC sample. Plot B shows the whole spectrum. Plot C shows a detail view of the fingerprint 

region. In both B and C, the blue line is the original spectrum and the black line is the best fit line built by 

summing the values of all Gaussian peaks (coloured peaks) fitted to the original. 
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employed to produce different perspectives on the 

continuum of PyC, with CP measurements being 

considered representative of less condensed material 

and DP measurements representative of more 

condensed material (Kane et al. 2010, Quideau et al. 

2013). To facilitate this potential use, we evaluated 

the correlations of both methods to our FTIR data 

through independent models. 

 

Model building 

Using the NMR-validated PyC contents for our 30 

admixtures and eight field samples, (n=38), we fitted 

six final linear models and one partial least squares 

regression (PLSR) model. Peak fitting followed by 

linear modelling has been used for predicting soil and 

peat  properties  (Hodgkins et al. 2018,  Wilson et al. 

 

 

 
 

Figure 3. A comparison of direct polarisation 

NMR spectra representing three endmembers, 

surficial Sphagnum peat, deep Sphagnum peat, and 

pyrogenic carbon for illustrative purposes. 

2022). Partial least squares regression has also been 

used in similar approaches focused on different soil 

types (Cotrufo et al. 2016, De la Rosa et al. 2019, 

Cadd et al. 2020, Sanderman et al. 2020). We wanted 

to apply and compare both methods for predicting 

PyC in peat. The six linear models predict either DP 

or CP NMR estimates, and integrate either all 

matrices (n=38), only surface peat matrices (depth 

interval 0–40 cm, n=15, surface admixtures only), or 

only deep peat matrices (depths > 40 cm, n=23, deep 

admixtures + field samples). The seventh model 

developed in this study uses PLSR to predict DP NMR 

estimates in all matrices (n=38). All models were 

built and tested in JMP (JMP Pro 15, SAS, Cary, NC). 

Initial linear modelling attempts indicated 

heteroscedasticity within the data, so a base 10 

logarithmic transformation with an offset of 1 to 

allow the inclusion of 0 values was applied to our 

known PyC values given by NMR. We used mixed 

direction, stepwise parameter selection to determine 

the peaks of greatest statistical importance for 

predicting PyC. The selected parameters were fitted 

to the data using standard least squares regression. 

We used variance inflation factors (VIFs) to 

eliminate parameters that exhibited multicollinearity. 

We used PRESS statistics to evaluate a model’s 

suitability for prediction by testing the model 

accuracy using leave-one-out cross-validation. 

Having PRESS values similar to their corresponding 

normal values indicates that the model is not likely 

overfit to the training data. 

We present only one PLSR model because we 

consider DP NMR predictions the most reliable and 

the act of subsetting for depth specific models would 

further limit n, increasing the risk of overfitting. For 

this modelling approach we used untransformed PyC 

concentration data as normality is not a requirement 

of PLSR (Wold et al. 2001). Instead, we smoothed 

the spectra by taking a 5-sample moving average of 

the absorbances, and then we took the first derivative 

of those smoothed spectra. We attempted PLSR on 

pre-smoothed, smoothed, and smoothed first 

derivative spectra and found the best results using the 

smoothed first derivative. We also truncated the 

spectra to between 3980 and 550 cm-1 to minimise the 

ends of the spectra we considered uninformative. We 

used the NIPALS method (Wold et al. 1984) and 

leave-one-out cross validation. We selected the most 

parsimonious model, composed of four factors, 

which did not differ significantly (as determined by 

Van der Voet T2) from the optimal model (as 

determined by minimum root mean PRESS), which 

was composed of seven factors. We also considered 

the Q2 values which agreed with the above. 
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RESULTS 

 

Elemental analysis (Figure 1) showed that the char 

endmembers we picked are comparable in 

condensation to other examples of natural char from 

similar ecosystems (Kane et al. 2007). The natural 

char layers were generally less condensed than these 

chars (with the exception of the Michigan Char 

endmember), which makes sense considering that 

these natural layers are diluted with uncharred peat 

matter. The van Krevelen diagram indicates that our 

samples fall within the expected range in comparison 

to other examples of similar materials (chars and peat 

DOM) (Sekiguchi et al. 1983, Kane et al. 2007, 

Herzsprung et al. 2017, Uhelski & Miesel 2017). 

Direct Polarisation NMR measures were 

consistently higher than CP NMR measures of PyC 

(Tables A2–A4), which reflects the bias exhibited by 

CP NMR toward the less condensed moieties 

discussed above. For this reason, we generally 

preferred the DP predicting models and we consider 

this difference to be the primary driver of the 

difference in quality between the DP and CP 

predicting models. 

The depth-specific linear models explained more 

of the variance and had better PRESS statistics than 

the generalised models, particularly the surface 

specific models, and the greatest differences occurred 

in the CP predicting models (Table 1 and Figure 4). 

However, the majority of peat in these particular 

ecosystems is deep peat, the specific models for 

which differed little from the overall models. We 

therefore focus on the two overall models correlating 

FTIR spectra with NMR measures of peat PyC 

content, one for DP NMR and one for CP NMR. 

Using overall models allows us to focus on the 

models with the highest n and removes the need to 

differentiate between deep and surface peat, a 

boundary that can be difficult to locate in practice, 

simplifying potential future application. The overall 

DP predicting model had similar or better PRESS 

values to depth-specific models predicting DP; given 

the difference in matrix composition this is 

remarkable (Table  1). In comparison, the CP 

predicting overall model was similar in PRESS 

statistics to the deep peat-specific model but 

explained less of the variance than the surface peat-

specific model (Table 1). 

The PLSR DP predicting model (n=38) produces 

initially impressive results, with four factors 

explaining over 97 % of the variance in PyC 

predictions, and almost 60 % of the variance in the 

spectra (Table 2). However, the Q2 values, which 

correspond to the linear models PRESS R2 values, are 

actually lower for the selected PLSR model than for 

the equivalent linear model. Additionally, the 

difference between basic correlation values (R2 and 

cumulative R2Y) and validation correlation values 

(PRESS R2 and Q2) should ideally be minimal, as the 

basic correlation values can be easily inflated by 

some degree of overfitting, while overfitting tends to 

decrease the validation values. 

Both DP and CP models tended to overestimate 

PyC when PyC concentration was low and to 

underestimate it when PyC concentration was high 

(Figure 5). The DP model positively correlated PyC 

mass fraction with Peak 12 (mean peak location ± 

standard deviation) (1720 cm-1 ± < 0.01) and Peak 3 

(1160 cm-1 ± 1). These peaks are associated with a 

wide variety of organic moieties, notably aromatics 

for Peak 3 and anhydrides for Peak 12 (Table A5). 

The   DP   model   negatively   correlated   PyC   mass 

 

 

Table 1. Summary data for direct polarisation and cross polarisation peak fitting MLR models incorporating 

different depth intervals (0–40 cm, > 40 cm). The models predict the mass percent of PyC in a sample on the 

log 10 scale, therefore RMSE values are given in the log 10 transformed scale. Bold type indicates the overall 

models that are the focus of analysis. DP refers to direct polarisation and CP refers to cross polarisation, both 

of which are methods for pyrogenic carbon validation. 

 

MODEL DATA STANDARD TERMS PRESS STATS 

Matrix Predicting n R2 Adj. R2 RMSE PRESS RMSE PRESS R2 

Overall DP 38 0.857 0.840 0.180 0.198 0.801 

Surface DP 15 0.924 0.904 0.121 0.208 0.693 

Deep DP 23 0.902 0.880 0.163 0.204 0.802 

Overall CP 38 0.667 0.627 0.239 0.271 0.508 

Surface CP 15 0.929 0.909 0.114 0.157 0.813 

Deep CP 23 0.672 0.599 0.257 0.305 0.409 
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Figure 4. Plots showing predicted versus actual 

slopes of all models on the log scale, with the 1:1 

(y = x) line in dotted grey, for the peak fitted 

(A) direct polarisation, (B) cross polarisation and 

(C) PLS direct polarisation models. Model 

statistics are as presented in Table 2.  

fraction with two other peaks, Peak 14 (2921 ± 2) and 

Peak 7 (1381 ± 0.02). These peaks correlated with 

other, mostly non-aromatic, organic moieties not 

strongly associated with PyC (Table 3). The 

predictive equation for this model is: 

 

Y = 0.0682596 + (P3 * 0.0189366) – (P7 * 0.018202) 

+ (P12 * 0.0126316) – (P14 * 0.011629)            [1] 

 

The CP model positively correlated PyC mass 

fraction with the same two peaks, 12 (1720 cm-1 ± 

< 0.01) and 3 (1160 cm-1 ± 1) (Peak 3 associated 

notably with aromatics and Peak 12 with anhydrides). 

It negatively correlated PyC mass fraction with two 

other peaks, Peak 4 (1229 ± 2.77 cm-1) and Peak 7 

(1381 ± 0.02 cm-1). These peaks were related to other, 

mostly non-aromatic organic moieties not strongly 

associated with PyC (Table 3). The predictive model 

for this is reflected in Equation 2: 

 

Y = 0.5919393 + (P3 * 0.0318442) – (P4 * 0.00305) 

– (P7 * 0.022012) + (P12 * 0.0081828)               [2] 

 

In Equations 1 and 2, predicted sample PyC mass 

percent equals 10Y+1, and PX refers to the area under 

the peak with the given identification number. 

The PLSR model, which integrates almost the 

entire spectrum, cannot be simplified to a single 

equation. Ultimately, the particular features 

considered by the PLSR model are obfuscated by the 

scale and complexity of the data available in the 

spectra. This obfuscation by complexity is one 

detriment of the PLSR approach. 

 

 

DISCUSSION 

 

Model components 

We showed that FTIR can be used to make useful 

predictions of the PyC content of peat soil. The 

aromatic structures of char may not interact as 

strongly with infrared light as other, more polar non-

char moieties, but we were still able to predict the 

char content of peat samples with accuracy (Tables 1 

and 2). Ultimately, model associations were chosen 

statistically rather than a priori based on their actual 

correlation in our sample set with the PyC 

concentrations of eleven different naturally produced 

peatland chars. 

Both the linear DP and CP models correlated 

positively with Peaks 3 and 12. Peak 3 is associated 

with C-O and R-O-R bonds (Skoog 2014), and 

with -C-OH bonds (Niemeyer et al. 1992), although 

contributions may also come from aromatic moieties 

(Colthup 1950), which are common in PyC. Colthup
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Table 2. Summary data for direct polarisation PLS models incorporating different depth intervals (0–40 cm, 

> 40 cm). The models predict the mass percent of PyC in a sample. Bold type identifies the model that is the 

focus of analysis. Italicised cells indicate significant (p < 0.05) differences in van der Voet T2. 

 

Factors 
Root Mean 

PRESS 

Prob > van 

der Voet T² 
Q² 

Cumulative 

R²X 

Cumulative 

R²Y 

0 1.027 <.0001 -0.055 0.000 0.000 

1 0.688 <.0001 0.526 0.297 0.643 

2 0.629 <.0001 0.605 0.433 0.818 

3 0.579 0.009 0.665 0.540 0.907 

4 0.496 0.123 0.754 0.598 0.972 

5 0.473 0.098 0.776 0.667 0.988 

6 0.451 0.393 0.796 0.702 0.995 

7 0.445 1.000 0.802 0.738 0.998 

 

 

(1950) associates the region around Peak 12 with 

anhydrides, a class of molecules which can be formed 

through pyrolysis of cellulose and hemicellulose 

(Simoneit et al. 1999, Nolte et al. 2001). Another 

possibility is that the Peak 12 signal represents aged 

PyC, which becomes “enriched in oxygen-containing 

functional groups such as carboxylic acid, esters, 

aldehydes and ketones” [emphasis added], 

eventually causing reversion of PyC to humic organic 

matter or mineralisation (Preston & Schmidt 2006). 

The latter three moieties are all represented under 

Peak 12, and could explain its strong relationship to 

PyC, particularly to aged PyC. Whether this results in 

overrepresentation of PyC that is older or was more 

oxidised is unclear and warrants further study. 

Both linear models negatively correlated PyC 

with peaks representing more common moieties, 

particularly alkanes. It is likely that the negative 

relationship of our models with alkanes and other 

uncondensed moieties has less to do with these 

moieties being unable to coexist with PyC, and more 

to do with the fact that the predictions are measured 

in mass fraction. Therefore, any increase in the mass 

percent contribution from other moieties must result 

in a decrease in percent PyC. These other moieties 

represent other constituents of peat including 

aliphatics, lignin, cellulose and others, with which 

PyC, if present, must share space. 

 

Comparison of peak fitting and partial least 

squares approaches 

Spectral predictive modelling is best suited for large 

datasets. Spectra are composed of thousands of 

absorbance values at given wavenumbers, each of 

which could be treated as highly autocorrelated 

independent variables (Xs), and we want to use 

spectra to predict few dependent variables (Ys) (soil 

properties, such as [PyC]), which is problematic 

when power (n) is low. The two methods, peak fitting 

and PLSR, approach this in different ways. Peak 

fitting reduces the number of Xs and the 

autocorrelation by summarising the spectral features, 

condensing them to manageable and interpretable 

features. The purpose of PLSR for spectral 

interpretation is to ingest as much of the available 

spectral data as possible to make the most accurate 

predictions. In effect, PLSR summarises the spectra 

into a smaller number of Xs by using what is 

effectively internal principal components analysis. 

Each factor is one principal component. However, 

the PLSR method remains far more difficult to 

mechanistically interpret than the linear models. 

While both approaches summarise spectra, the peak 

fitting approach produces peak areas that directly 

relate to spectral features which have been 

thoroughly described. In contrast, each of the four 

factors in our PLSR model responds uniquely to each 

observation of absorbance. Even VIP and 

coefficients plots which summarise the four factors 

into one single dimension are difficult to interpret due 

to rapid fluctuations and noise. 

Furthermore, PLSR, while relatively transparent 

and robust to overfitting in comparison to other big 

data methods such as machine learning, is still a data 

intense method. Like other studies applying PLSR to 

PyC, our n was severely limited by the expense of 

NMR validation (Cotrufo et al. 2016, Cadd et al. 

2020). The amount of variance that can be included 

in a small dataset such as ours is necessarily limited 

compared to a properly constructed dataset of a larger 

n. Pearson et al. (2014) recommend >120 calibration 

samples. Datasets of lower n can more easily lead to 

overfit models. This is probably why our PLSR 

model produces far superior R2 compared to the peak 
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Figure 5 (right). A plot showing predicted versus 

actual values for the peak fitted (A) overall direct 

polarisation, (B) overall cross polarisation, and 

(C) PLS overall direct polarisation models. Depicted 

are sample points, mean (solid black line), 

confidence interval (dark grey zone), prediction 

interval (light grey zone), and 1:1 (y = x) line (dotted 

grey line). Filled symbols are deep samples, open 

symbols are surface samples. Squares are Canadian 

char admixtures, triangles are Minnesota char 

admixtures, circles are Michigan char admixtures, 

and diamonds are NMR-validated natural char layers. 

 

 

 

fitting linear models but falls flat when validation 

methods come into play, which reveals that the 

predictive ability is in fact worse (comparing Q2 to 

PRESS R2). 

Beyond the fact that our PLSR model shows signs 

of overfitting, there is also the matter of 

generalisability. It takes a massive database of 

spectra, reliable soil properties data and metadata to 

produce spectrometry-based PLSR models which can 

reliably be applied to landscapes (see, for example, 

Sanderman et al. 2020, 2021), which currently does 

not exist for organic soils (Histosols). Partial least 

squares regression can be highly sensitive to 

attributes unique to individual instruments and 

calibration transfer, while possible, is difficult 

(Feudale et al. 2002, Workman 2018). Therefore, the 

application of our PLSR model is limited. Our PLSR 

model and dataset provide just one step towards a 

potential future Histosol calibration. As such, for 

quantification of PyC in peat soil at this time we 

recommend the peak fitting approach. 

 

Model application 

For determination of historical fire regimes of peat 

soil profiles, any FTIR method must be applied to 

subsamples taken at small enough depth intervals to 

capture PyC layers with minimal dilution by 

unaltered peat. We recommend depth intervals of 

around 2 cm for low bulk density and unfrozen 

matrices like peat (compared with 0.5–3 cm for 

sediments; Hoecker et al. 2020). Changes in the 

pattern of burning with fuel type (surficial vegetation 

versus peat burning) or wildfire intensity may lead to 

no detectable PyC layer being produced, either due to 

most C being combusted rather than pyrolysed, or 

due to little C being affected. Such a scenario is 

unlikely in a peat wildfire but may be possible in a 

vegetation fire where fuel can be finer and drier, and 

thus more susceptible to flaming as opposed to 

smouldering. The  threshold  for  detectability  largely  
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depends on the thickness of each sample and the 

calibration of the model. Layers of PyC may overlap 

one another, or an antecedent layer could be 

consumed by one or more succeeding fires, so 

estimates of fire regimes must consider these 

complications. Moreover, in wetlands with lateral 

flow (such as fens), recent PyC may simply be 

translocated (cf., Masiello & Berhe 2020), but this is 

less likely in more ombrotrophic peatlands. We 

suggest that PyC layers could be distinguished when 

a spike in predicted PyC exists within the profile, 

deviating from a baseline minimum PyC content 

determined by the model user. If a PyC layer is thick 

enough, or if there is vertical movement of PyC, 

multiple subsamples could be affected in a vertical 

sequence, so we recommend that PyC spikes in the 

profile be counted rather than individual subsamples 

composing the spike, to avoid overestimating fire 

occurrence. Using these methods and keeping in 

mind these considerations should help produce 

conservative minimum fire return intervals for a 

given peat profile. These techniques in combination 

with radiocarbon dating should be useful tools in 

deriving minimum fire frequencies or maximum 

average fire return intervals in peatlands. 

 

Model limitations 

While the models utilised here show promise for 

evaluating the fire histories of peatlands, they were 

fitted to a limited range of real PyC contents, so may 

not accurately predict samples exceeding this range. 

Additionally, it has recently been shown that the 

spectral properties of PyC produced at high 

temperatures are significantly different from those of 

PyC produced at lower temperatures (Gao et al. 

2022). As such, burn conditions including 

temperature and duration can influence the PyC 

signal to some degree. The FTIR spectra recorded 

from peat will be a product of both the contents of the 

peat and their relative abundances, so we cannot 

precisely discern whether spectral features are due to 

PyC characteristics or PyC abundance without 

isolation of the PyC. Notwithstanding, we highlight 

here that our models reliably identified natural PyC 

with likely variable burn conditions and time since 

fire, which suggests our models are at least somewhat 

robust to fire condition variance within this 

ecosystem type. We chose this approach over one 

including “pure” graphitic PyC because this would 

not be representative of natural chars, particularly in 

peatlands. We fitted our models on peat 

representative of Sphagnum-dominated northern 

peatlands, so different peat sources (and changes in 

burn conditions) may reduce the accuracy of the 

models in other ecosystems. However, the peaks used 

in each peak fitting model are related to moieties 

present in a broad range of peat types (cf., Hodgkins 

et al. 2018), suggesting these models may be broadly 

applicable within this ecosystem type. Applying this 

type of model would require accepting the 

assumptions that the peat and char being measured 

fall within the range of variation of the samples used 

to fit this model. In which case, the PRESS statistics 

for the models would give the best indication of the 

appropriate level of certainty. Therefore, we 

recommend validation measures be taken for 

individual studies, particularly on peats that are 

significantly different, such as those from tropical 

peatlands. We invite further study to validate the peak 

fitting method and to contribute to broadening the 

peat, char and instrumental datasets necessary to 

make broadly applicable PLSR models of peat soil 

properties for the research community to use. 
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The supplementary material for this article is available for separate download as a single .zip file. This material 

includes the Python script used to baseline correct batches of spectra saved as .CSV files; the OriginPro peak 

fitting batch processing template file; Excel files containing the details of all seven models produced (PLSR 

overall, DP overall, shallow, and deep, CP overall, shallow, and deep); more information on the specific 

samples analysed with 13C NMR; also the NMR and FTIR data. 
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Appendix 
 

 

 

 

Table A1. Atomic ratios for the van Krevelen diagram presented in Figure 1. 

 

Source Identifier O/C AtomicR H/C AtomicR 

This study 

Field Sample 0.47 1.22 

Field Sample 0.41 1.26 

Field Sample 0.50 1.17 

Field Sample 0.40 1.16 

Field Sample 0.43 1.15 

Field Sample 0.41 1.20 

MIC 0.50 1.17 

CAC 0.42 0.61 

MNC 0.27 0.78 

Kane et al. (2007) char samples 

DOI: 10.1029/2007JG000458 

ML1P3 0.26 0.34 

HM2P2 0.29 0.61 

MM1P2 0.23 0.42 

PH3P1 0.34 0.66 

PH2P4 0.31 0.72 

MH1P4 0.41 0.57 

HH3P6 0.28 0.57 

HH3P5 0.26 0.78 

Sekiguchi et al. (1983) samples 

DOI: 10.1002/app.1983.070281116 

500 deg C 0.15 0.54 

400 deg C 0.23 0.76 

325 deg C 0.89 1.50 
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Table A2. Summary of NMR chemical shift regions and pyrogenic carbon concentration ([PyC]) predicted by the modified molecular mixing model (Baldock et al. 

2004). Further data are available in Tables A3 and A4. 

 

   Relative contribution (%) of chemical shift region (ppm) 
Predicted 

[PyC] 

(%) 

   Alkyl C 

0–45 

O-Alkyl C Aryl C 
Amide/Carboxyl 

165–215 
   N-Alkyl/Methoxyl 

45–60 

O-Alkyl 

60–95 

Di-O-Alkyl 

95–110 

Aromatic 

110–145 

Phenolic 

145–165    

D
ir

ec
t 

p
o
la

ri
sa

ti
o
n
 N

M
R

 

Endmembers 

Surface Sph 16.89 8.43 34.35 12.45 12.24 6.81 8.83 0.0 

Deep Sph 18.34 9.92 39.08 12.63 8.16 4.77 7.11 0.0 

Canadian Char 17.71 6.27 23.81 9.02 17.72 8.14 17.33 7.4 

Minnesota Char 23.34 10.43 25.75 10.04 14.79 4.32 11.32 2.3 

Michigan Char 28.86 3.32 13.06 5.68 23.04 7.96 18.09 24.4 

Field Samples 

Seney 1 41.84 4.03 18.64 4.42 13.77 3.77 13.52 13.2 

Seney 2 24.70 5.87 16.87 7.06 19.13 9.54 16.82 9.4 

Seney 3 30.88 2.24 11.92 8.68 21.24 9.11 15.93 17.4 

Sleeper Lake 1 32.45 1.20 7.60 9.15 21.93 6.07 21.60 22.1 

Sleeper Lake 2 36.28 4.96 11.93 1.67 18.88 6.07 20.20 17.0 

Sleeper Lake 3 34.49 2.65 10.64 9.10 17.35 2.20 23.56 17.0 

Painesdale 1 13.91 4.92 40.16 12.10 18.04 3.84 7.03 14.5 

Painesdale 2 16.90 5.08 38.13 14.40 14.81 3.51 7.16 9.0 

C
ro

ss
 p

o
la

ri
sa

ti
o

n
 N

M
R

 

Endmembers 

Surface Sph 12.67 9.06 43.51 9.52 11.21 4.65 9.38 0.0 

Deep Sph 12.90 11.48 44.12 9.31 10.92 4.66 6.61 0.0 

Canadian Char 16.53 14.39 21.00 9.38 18.74 6.52 13.44 0.0 

Minnesota Char 26.16 9.36 36.49 7.67 10.53 2.97 6.82 1.3 

Michigan Char 37.58 6.93 13.44 3.49 19.32 8.05 11.22 16.2 

Field Samples 

Seney 1 57.31 7.03 10.59 5.42 12.43 3.63 3.59 8.4 

Seney 2 25.00 14.52 23.07 6.30 16.87 6.81 7.45 0.0 

Seney 3 32.40 7.89 17.32 4.50 17.75 7.79 12.35 8.2 

Sleeper Lake 1 27.27 11.67 23.11 7.81 16.85 4.94 8.35 3.8 

Sleeper Lake 2 33.37 10.97 20.81 6.53 16.73 6.19 5.40 4.7 

Sleeper Lake 3 26.43 14.88 24.67 5.57 14.96 5.92 7.59 0.0 

Painesdale 1 28.47 12.75 21.91 6.17 19.56 6.35 4.80 5.3 

Painesdale 2 28.94 16.36 15.89 6.34 19.91 7.76 4.80 0.0 
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Table A3. Elaboration upon Table A2, providing additional data on direct polarisation NMR chemical shift regions, and on C and N concentrations. 

 

      Relative peak areas for chemical shift regions 

      

Alkyl C 

0–45 

O-Alkyl C Aryl C Carboxyl C/Amide/Ester 

Samples 
C 

(%) 

C 

(mg g-1) 

N 

(%) 

N 

(mg g-1) 

C 

(mg) 

Methoxyl 

/N-alkyl 

45–60 

O-Alkyl 

60–95 

Di-O-Alkyl 

95–110 

Aromatic 

110–145 

Phenolic 

145–165 

Carboxyl/ 

Amide 

165–185 

Aldehyde/ 

Ketone 

185–220 

165–220 

Surface Sph 44.43 444.27 0.91 9.12 0.07 16.89 8.43 34.35 12.45 12.24 6.81 7.18 1.65 8.83 

Deep Sph 43.66 436.60 0.91 9.06 0.08 18.34 9.92 39.08 12.63 8.16 4.77 6.41 0.70 7.11 

Canadian Char 42.46 424.57 1.35 13.51 0.07 17.71 6.27 23.81 9.02 17.72 8.14 10.18 7.15 17.33 

Minnesota Char 45.32 453.19 1.69 16.86 0.09 23.34 10.43 25.75 10.04 14.79 4.32 9.98 1.34 11.32 

Michigan Char 48.90 489.02 3.73 37.32 0.11 28.86 3.32 13.06 5.68 23.04 7.96 9.03 9.06 18.09 

Seney 1 53.19 531.90 1.75 17.46 0.11 41.84 4.03 18.64 4.42 13.77 3.77 9.79 3.73 13.52 

Seney 2 53.02 530.18 1.89 18.90 0.10 24.70 5.87 16.87 7.06 19.13 9.54 11.20 5.62 16.82 

Seney 3 53.41 534.09 1.67 16.74 0.10 30.88 2.24 11.92 8.68 21.24 9.11 12.25 3.68 15.93 

Sleeper Lake 1 53.26 532.56 1.82 18.23 0.10 32.45 1.20 7.60 9.15 21.93 6.07 12.20 9.40 21.60 

Sleeper Lake 2 52.37 523.69 2.02 20.15 0.09 36.28 4.96 11.93 1.67 18.88 6.07 15.05 5.15 20.20 

Sleeper Lake 3 50.33 503.25 2.18 21.76 0.10 34.49 2.65 10.64 9.10 17.35 2.20 11.11 12.45 23.56 

Painesdale 1 48.42 484.20 1.16 11.57 0.09 13.91 4.92 40.16 12.10 18.04 3.84 5.60 1.43 7.03 

Painesdale 2 49.56 495.64 1.32 13.17 0.09 16.90 5.08 38.13 14.40 14.81 3.51 5.69 1.47 7.16 
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Table A4. Elaboration upon Table A2, providing additional data on cross polarisation NMR chemical shift regions, and on C and N concentrations. 

 

      Relative peak areas for chemical shift regions 

      

Alkyl C 

0–45 

O-Alkyl C Aryl C Carboxyl C/Amide/Ester 

Source 
C 

(%) 

C 

(mg g-1) 

N 

(%) 

N 

(mg g-1) 

C 

(mg) 

Methoxyl/ 

N-alkyl 

45–60 

O-Alkyl 

60–95 

Di-O-Alkyl 

95–110 

Aromatic 

110–145 

Phenolic 

145–165 

Carboxyl/ 

Amide 

165–185 

Aldehyde/ 

Ketone 

185–220 

165–220 

Surface Sph 44.43 444.27 0.91 9.12 0.07 12.67 9.06 43.51 9.52 11.21 4.65 5.85 3.53 9.38 

Deep Sph 43.66 436.60 0.91 9.06 0.08 12.90 11.48 44.12 9.31 10.92 4.66 4.95 1.66 6.61 

Canadian Char 42.46 424.57 1.35 13.51 0.07 16.53 14.39 21.00 9.38 18.74 6.52 6.82 6.62 13.44 

Minnesota Char 45.32 453.19 1.69 16.86 0.09 26.16 9.36 36.49 7.67 10.53 2.97 5.66 1.16 6.82 

Michigan Char 48.90 489.02 3.73 37.32 0.11 37.58 6.93 13.44 3.49 19.32 8.05 8.08 3.14 11.22 

Seney 1 53.19 531.90 1.75 17.46 0.11 57.31 7.03 10.59 5.42 12.43 3.63 3.54 0.05 3.59 

Seney 2 53.02 530.18 1.89 18.90 0.10 25.00 14.52 23.07 6.30 16.87 6.81 5.99 1.46 7.45 

Seney 3 53.41 534.09 1.67 16.74 0.10 32.40 7.89 17.32 4.50 17.75 7.79 8.57 3.78 12.35 

Sleeper Lake 1 53.26 532.56 1.82 18.23 0.10 27.27 11.67 23.11 7.81 16.85 4.94 5.26 3.09 8.35 

Sleeper Lake 2 52.37 523.69 2.02 20.15 0.09 33.37 10.97 20.81 6.53 16.73 6.19 5.27 0.13 5.40 

Sleeper Lake 3 50.33 503.25 2.18 21.76 0.10 26.43 14.88 24.67 5.57 14.96 5.92 6.25 1.34 7.59 

Painesdale 1 48.42 484.20 1.16 11.57 0.09 28.47 12.75 21.91 6.17 19.56 6.35 3.67 1.13 4.80 

Painesdale 2 49.56 495.64 1.32 13.17 0.09 28.94 16.36 15.89 6.34 19.91 7.76 4.44 0.36 4.80 
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Table A5. The roster of peaks fitted to each sample spectrum, specified by identifier (Peak), wavenumber (WN), associated moieties and bonds, according to Colthup 

(1950), Sekiguchi et al. (1983), Niemeyer et al. (1992), Cocozza et al. (2003) and Skoog (2014). Also included is the sign of the relationship, positive (+) or negative 

(-), to pyrogenic carbon in models fitted for both direct polarisation (DP) and cross polarisation (CP) estimations. Superscripts indicate bonds and moieties supported 

by (1) Niemeyer et al. 1992 and (2) Cocozza et al. (2003), who concern themselves specifically with peat samples. Cells shaded grey indicate when a peak was used as 

a parameter in an overall model. P values and LogWorths are indicated in the context of the overall models. 

 

Peak 
Peak WN 

(cm-1) 

Relation 

w/PyC 

(DP) 

Relation 

w/PyC 

(CP) 

P value 

(LogWorth) 

(DP) 

P value 

(LogWorth) 

(CP) 

Associated moieties Associated bonds 

  1 1054 ± 1.84 0 0   Aromatics, Ethyl & propyl alkanes, Primary alcohols, Aliphatic aldehydes, 

Polysaccharides2 C-C, C-O2, C-N 

  2 1116 ± 1.29 0 0   Aromatics, Anhydrides, Isopropyl alkanes, Aliphatic ethers, Secondary alcohols, 

Amides, Amines, Benzoate / phyhalate esters 
C-C, C-O, C-N 

  3 1160 ± 0.94 + + 
  0.0003 

  (3.471) 

< 0.0001 

  (4.708) 

Aromatics, Aliphatics1, Amides, Amines, Esters, Ketones, Iso-propyl and Tertiary 

butyl alkanes 
C-C, C-O, C-N, -C-OH1 

  4 1229 ± 2.77 0 -    0.0173 

  (1.763) 

Acetate, Cyclic anhydrides, Aromatic alcohols, Aromatic ketones, ethers2, 

carboxyls1,2  
C-O1,2, C-N, O-H, -CH1 

  5 1267 ± 1.45 0 0   Cyclic anhydrides, Aromatic ethers, Aromatic alcohols, Aromatic ketones, Esters, 

Tertiary butyl alkanes, Phenolic OH1, ethers2, carboxyls2  
C-O2, C-N, O-H,-C-OH1 

  6 1326 ± 0.77 0 0   Alkanes, Alkenes, Alcohols, Amines C-H, O-H 

  7 1381 ± 0.02 - - 
< 0.0001 

  (4.415) 

  0.0001 

  (3.931) 

Alkanes, Tertiary alcohols, Aromatic alcohols, Aldehydes, Phenolic OH2, Aliphatic 

OH2 
C=S, C-H, O-H2 

  8 1431 ± 0.76 0 0   Alkanes, Alkenes, Carboxylic acids, Alcohols, Phenolic OH2, Aliphatic OH2 C-H, O-H2 

  9 1460 ± 0.68 0 0   Alkanes, Primary Alcohols, Vicinal trisubstituted aromatics, Methyl1, Methylene1 C-H1 

10 1512 ± 3.30 0 0   Aromatics2, Amides2, Amines2, Imines2 N-H, C=C1,2, C=N2 

11 1615 ± 1.19 0 0   Alkenes, Aromatics2, Ionised carboxyl2, Amides, Amines, HCl, Covalent nitrate, 

Covalent nitrite 
C=N, C=C2, N-H, -COO-1,2 

12 1720 ± <0.01 + + 
< 0.0001 

(13.564) 

< 0.0001 

  (7.021) 

Anhydrides, Esters, Aldehydes2, Ketones2, Covalent carbonates, Carboxyl2, 

Carbonyl2 C=O1,2 

13 2852 ± 1.78 0 0   Alkanes, Aldehydes, Aliphatic CH2 C-H1,2 

14 2921 ± 1.65 - 0 
< 0.0001 

  (4.489) 
 Alkanes, Alkenes, Carboxylic acids, Aliphatic CH2 C-H2 

15 3425 ± <0.01 0 0   Alcohols, Amines, Amides O-H2, N-H 
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Figure A1. Correlations between the peak areas fit in OriginPro 2019b and the peak heights found in the corresponding FTIR spectra in the region between 4000 

and 2000 cm-1 of the spectra shown in Figure 2. Despite the appearance of lack of fit in Figure 2, there are strong correlations. Both axes are unitless because all 

spectra were standardised for analysis. 
 


