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SUMMARY 
 
In this article we provide a brief overview of the protocols for dating peat profiles using tephrochronology. A 
standardised methodology for the detection, extraction and analysis of tephras is presented and the relevant 
problems and limitations are discussed. 
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1. INTRODUCTION 
 
Tephrochronology (dating using volcanic ash 
layers) is a particularly useful tool for developing 
robust chronologies from peat sequences (e.g. 
Langdon & Barber 2005) and for examining inter-
site records across specific isochrons or ‘snapshots 
in time’, allowing the spatial synchroneity of 
environmental changes to be scrutinised (Hall et al. 
1994, Hall 2003, Langdon & Barber 2004). 
Tephrochronology may also prove helpful during 
periods when the chronological precision of 14C is 
limited (Plunkett et al. 2004, Swindles et al. 2007). 

Tephra layers are sometimes visible to the naked 
eye, for example in Iceland, New Zealand and 
Kamchatka (Braitseva et al. 1997, Larsen et al. 
1999, Lowe et al. 2000), but invisible (and often 
microscopic) cryptotephra layers (sensu Lowe & 
Hunt 2001) have been found in many more areas of 
the world at a distance from volcanic sources (e.g. 
Persson 1971, Dugmore 1989, Dugmore et al. 1995, 
Hall & Pilcher 2002, van den Bogaard et al. 2002, 
Zillén et al. 2002, Boygle 2004, Chambers et al. 
2004, Pilcher et al. 2005, Wastegård 2005, Gehrels 
et al. 2006, Hang et al. 2006, Payne et al. 2008). 
Some historic tephras can be assigned a known 
calendar date such as the eruptions of Hekla in 
Iceland in 1947, 1510 and 1104 (cf. Swindles et al. 
2008). The ages of other tephras have been 
constrained through high-precision radiocarbon 
techniques including wiggle-match dating of the 
deposits in which they are found (Pilcher et al. 
1995, Plunkett et al. 2004, Barber et al. 2008, 
Wastegård et al. 2008) and Bayesian age modelling 
approaches (Blockley et al. 2008). Tephro-
chronology is an extremely powerful tool for 
constraining past environmental events registered in 
peat sequences. However, this can be achieved only 

if accurate, quantitative distributional and 
geochemical data are obtained from the tephra layer 
in question. The chemical stability of tephras in peat 
has been recognised and repeatedly demonstrated by 
the successful correspondence of distal tephra 
geochemistries with material from source eruptions 
(e.g. Dugmore et al. 1992, Wastegård 2005). 

This paper describes the analytical procedures 
for dating peat profiles using tephrochronology. 
Tephras are firstly detected in peat ashes using light 
microscopy. Where tephra layers are encountered, 
an acid digestion technique is used to extract the 
shards from the peat matrix and the tephras are then 
mounted on slides for electron probe microanalysis. 
Identification of tephras is carried out through 
comparisons of geochemical data with results from 
previous studies. 
 
 
2. FINDING TEPHRA LAYERS IN PEAT 
PROFILES 
 
2.1 Detecting and isolating tephras 
Several non-destructive approaches may be used as 
a first stage in the detection of microscopic tephra 
layers in peat profiles, such as magnetic 
susceptibility, spectrophotometry and X-ray 
fluorescence (cf. Gehrels et al. 2008). The methods 
for analysis of tephra in peats that we present here 
are adapted from Dugmore et al. (1992) and Hall & 
Pilcher (2002). For an initial, rapid assessment of 
the occurrence of tephra, peat sequences can be 
subdivided into contiguous 5 cm-long samples along 
the length of the core or monolith, then the samples 
placed into crucibles and burnt in a muffle furnace 
at 600°C for six hours (Hall & Pilcher 2002). The 
resulting ashes are suspended in 10% HCl for up to 
24 hours, and then washed with deionised water to 
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remove all traces of acid. The aqueous samples are 
centrifuged at 3,000 r.p.m. for 10 minutes (no brake 
set) to concentrate the tephra at the bottoms of the 
tubes. For samples containing a significant 
proportion of minerogenic material, such as those 
from minerotrophic peats, sieving at 10 µm in an 
ultrasonic bath for 5–10 minutes can be carried out, 
although there is a risk that this may damage some 
fine glass shards. This stage is not usually needed 
for ombrotrophic peats. Samples rich in biogenic 
silica (e.g. diatoms, phytoliths) can be treated with 
hot 5% NaOH or KOH (Rose et al. 1996) but 
treatment should be limited to one hour to prevent 
chemical alteration of the volcanic glass. 
 
2.2 Slide preparation for petrography 
Samples are added in drops (using a Pasteur pipette) 
to a glass microscope slide on a hotplate at a low 
heat setting, and left until all the water evaporates. A 
drop of Histomount (or similar) is added to the slide 
and a coverslip applied. The slides should be left to 
dry and must be stored horizontally until the 
mounting medium has hardened. 
 
2.3 Petrography 
Slides are scanned using a transmitted light 
microscope at a total magnification of 100–400x. 

Plane-polarised light may be used to differentiate 
between tephra and other minerogenic material 
(Hall & Pilcher 2002, Chambers et al. 2004). 
Tephra can be recognised on the basis of its 
isotropism, colour, shape and vesicularity (Heiken 
1974, Westgate & Gorton 1981). Individual shards 
should be counted in transects and their colour and 
morphological characteristics may be noted 
(Figure 1). 

A quantitative estimation of the mineral vs. the 
glass shard content can be achieved by counting a 
minimum of 300 grains using the method of Van 
Harten (1965). Glass shards can be described in 
terms of their size and shape, but also the size and 
shape of their gas inclusions (Heiken 1972, 1974; 
Schmid 1981). Thin sections of the dense mineral 
residue can also be analysed to give a better idea of 
the relative proportions of the principal minerals 
found in the tephra. The minerals present in thin 
section can provide an insight into the formation of 
the tephra in question (type of magma, geotectonic 
context) (cf. MacKenzie & Guilford 1980). 

Specific minerals may be helpful in 
distinguishing volcanic centres when glass shards 
are absent or in such a low concentration that they 
do not allow for a subsequent chemical 
investigation. For example, titanite is a typical 

 
 

Figure 1. Photograph showing tephra shards with characteristic fluted and vesicular morphologies. The 
shards are from a currently unidentified tephra layer from the Shetland Isles, UK. 
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heavy mineral from the Laacher See tephra (van den
Bogaard & Schmincke 1985), and has been used to 
identify the event when glass shards were absent 
from sediments (Juvigné 1991). 
 
2.4 Quantitative analysis 
Following the initial detection of tephra at coarse 
resolution, the above procedures should be carried 
out using contiguous samples of peat in the 
section(s) of the core where shard concentrations 
have been identified to develop a tephrostratigraphy, 
i.e. a stratigraphic outline of tephra horizons, for the 
profile. Peat volume can be measured by calibrated 
syringe or a similar procedure. This stage can be 
combined with loss-on-ignition analysis if desired. 
Tablets of Lycopodium clavatum spores (cf. 
Stockmarr 1971) (or similar) may be added to the 
ashes during suspension in HCl for semi-
quantitative determination of tephra shard 
concentration (cf. Gehrels et al. 2006). If this 
procedure is not used, then each individual tephra 
shard per 1 cm3 sample must be counted to 
determine concentration accurately. Tephra 
concentration can be presented as number of shards 
per cm3 (Figure 2). 
 
 
3. ANALYSIS OF TEPHRA SHARDS 
 
3.1 Preparation for chemical analyses 
Tephra extracted by the combustion method cannot 
be used for geochemical analysis because the 
procedure alters the chemistry of the glass, so an 
acid digestion technique is used (Hall & Pilcher 
2002). A sample of at least 1–3 cm3 of peat, 
representing the horizon of maximum tephra 
concentration, is placed in a beaker on a hotplate 
(medium heat) inside a fume cupboard, then up to 
200 ml of concentrated H2SO4 is added until water 
is driven off. A small amount of concentrated HNO3 
can then be added; the solution reacts vigorously 
and dark fumes of NO2 are given off. Further small 
amounts of HNO3 are added until the reaction stops. 
When digestion of the peat is complete, the end 
product should be a straw yellow coloured solution. 
The solution should be left to cool and then diluted 
in one litre of water before fine-sieving (e.g. 
10 μm). The sample must be washed with copious 
amounts of deionised water (2–5 L) to ensure that 
all traces of acid are removed. The sample can then 
be pipetted into a centrifuge tube and centrifuged at 
3,000 r.p.m. for ten minutes (no brake set) to 
concentrate the tephra, and the supernatant is 
decanted. In addition we recommend that, if organic 
or waxy deposits remain, the digestion should be 
repeated  (Hall  &  Pilcher 2002).  Hot  dilute  alkali 

 

Figure 2. Tephrostratigraphy of Dead Island Bog 
(Northern Ireland), from the Hekla 4 isochron 
(Larsen & Thorarinsson 1977) which has been 14C 
wiggle-match dated to 2339–2279 cal. BC (Pilcher 
et al. 1995) to the historically dated Hekla AD 
1947 tephra (Thorarinsson 1967) (after Swindles et 
al. 2010). Tephra counts are expressed as number 
of shards cm-3. 

 
 
treatment may also be required if the sample is rich 
in biogenic silica. The size of the peat sample 
should be chosen to ensure that enough glass shards 
are concentrated to obtain sufficient analyses. 
 
3.2 Slide preparation for geochemical analysis 
As each electron microprobe laboratory may have 
specific requirements regarding the way in which 
samples for analysis are mounted, it is worth 
contacting the system administrator in advance of 
slide preparation. Typically, the surface of a glass 
slide is coarsely ground using 600 µm alumina grit 
or carborundum paper to improve sample cohesion 
(note that the slide must be of suitable dimensions to 
fit within the instrument that will be used to analyse 
the tephra geochemistry). The slide should be 
labelled using a diamond scriber on the un-ground 
side and a pencil on the ground side. Small square 
cells and labels for the tephra samples can also be 
drawn (using a pencil) on the ground side depending 
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on sample size (up to six per slide). The samples are 
pipetted onto their individual cells and the water 
evaporated on a hotplate at a low heat setting. One 
drop of epoxy resin (e.g. Araldite or equivalent, 
following the laboratory instructions) is applied over 
the dry specimens (ensuring a clean spatula is used 
for each sample) and left to dry on a hotplate. The 
slide should be ground on alumina grit or 
carborundum paper using progressively finer grades 
to leave a layer of resin 30–50 µm thick. Grinding 
should continue until tephra shards are nearly 
exposed (which should be checked regularly using a 
reflected light microscope to prevent over-exposure 
and loss of shards). The slide should then be washed 
in deionised water in an ultrasonic bath and polished 
using fine grade abrasive paper or polishing paste 
(alumina or diamond) at 6 µm, 3 µm and 1 µm 
(washing in an ultrasonic tank before each stage) to 
achieve a fine polish on the slide surface. The slide 
should then be meticulously washed in deionised 
water and carbon coated under a vacuum following 
the procedures of the electron probe laboratory. 
Instead of the glass slide method, some laboratories 
use brass or epoxy resin disks in which the tephra is 
mounted before being ground and polished. 
 
3.3 Geochemical analysis 
It is crucial that geochemical analysis of tephra 
follows protocols that provide consistently reliable 
data and researchers should be aware that inter-
laboratory discrepancies have been noted (Westgate 
& Gorton 1981, Hunt & Hill 1993, 1996; Potts et al. 
2002, Coulter et al. 2010). Such discrepancies are 
currently being examined in the Intercomparison of 
Tephrochronology Laboratories project, conducted 
by the International focus group on 
tephrochronology and volcanism (INTAV, 
http://home.wlu.edu/~kuehns/INTAV/interlab.html). 
Tephra geochemistry should be determined using 
wavelength-dispersive electron probe microanalysis. 
Although settings of the instrument may vary 
between laboratories, a defocused beam of 5–10 µm 
should be used and Na should be counted first to 
guard against migration (Hunt & Hill 1993, 2001). 
Algorithms such as ZAF, PAP or X-PHI should be 
used to correct for absorbance and fluorescence 
effects (Sweatman & Long 1969, Pouchou & 
Pichoir 1991, Merlet 1994). Primary and secondary 
standards such as pure synthetic oxides, simple 
silicates, andradite garnet, standard basalts and 
Lipari obsidian should be used for calibration and to 
check the accuracy of the analyses before and 
during analysis runs (Hunt et al. 1998). The main 
species that should be obtained are SiO2, TiO2, 
Al2O3, K2O, CaO, FeO(total), Na2O, MgO and MnO. 
Other species, such as F and P2O5 can be analysed if 

possible. Systems with linked energy dispersive 
systems (EDS) may be of particular use to help 
pinpoint very sparse tephra shards in thin section. 
The tephra geochemistry can be compared with 
previous analyses from online databases (e.g. 
Tephrabase, http://www.tephrabase.org/) or 
published works, and presented in biplots and/or 
ternary diagrams (Figure 3). Principal Components 
Analysis (PCA) may also be useful for tephra 
discrimination in certain circumstances (Pollard et 
al. 2006). However, it should be interpreted 
alongside the more traditional bivariate or trivariate 
major oxide diagrams (Pearce et al. 2008). 

It is common practice to omit data with less than 
95% of the analytical total, and this may be 
appropriate in many cases (Hunt & Hill 1993). 
However, it is not always possible to obtain totals 
>95%, especially from tephras containing a large 
amount of water (either primary magmatic or 
through post-depositional hydration of the glass) 
(Pearce et al. 2008). The number of analyses needed 
for the identification of the tephra is variable and 
dependent on the discretion of the researcher. It is 
often said that twenty or more is a suitable number, 
but this may not be attainable with very sparse 
layers. Sometimes distinct tephras can be identified 
with five (or even fewer) analyses, especially if 
other dating evidence is available. However, 
researchers should strive to get as many analyses as 
possible from a tephra layer. Normalisation of 
tephra geochemical data is common practice in the 
Southern Hemisphere and in North and South 
America, as this can remove the variable effects of 
hydration in different samples (e.g. Pearce et al. 
2008). This practice is probably best avoided, 
however, as it masks the quality of the data (Pollard 
et al. 2006) and does not allow other researchers 
access to the raw data. 
 
3.4 Density separation 
In peats containing a large amount of minerogenic 
material, density separation procedures may be 
needed to extract and concentrate the shards (cf. 
Turney 1998). We have achieved good results using 
LST Fastfloat (http://www.polytungstate.co.uk/), 
which is a solution of low toxicity sodium 
heteropolytungstates in water. Densities of 2.3–2.5 g 
cm-3 are commonly used in tephrochronology, 
which can be checked using a hydrometer (Turney 
1998). Bromoform (density 2.8 g cm-3) can also be 
used for the separation of glass shards. This method 
is relatively fast and allows the separation of 
minerals with grain sizes below 300 μm, which is 
typical of tephra layers (Juvigné 1979). However, 
bromoform should be used with caution as it is toxic 
to humans and the environment. 
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Figure 3. Ternary plot showing FeO(total), CaO and K2O for the Hekla 1947, 1510 and Hekla 4 tephra 
layers encountered in two peatlands in the North of Ireland (after Swindles et al. 2010). It is evident that 
Hekla 1947 (circles) and 1510 (crosses) are indistinguishable on the grounds of their major element oxide 
geochemistry, whereas Hekla 4 (triangles) can be easily distinguished from these layers. 

 
 
4. POTENTIAL AND LIMITATIONS 
 
Although a standard protocol for tephrochronology 
is presented here, there is a growing body of 
literature presenting experimental methods for the 
detection, extraction, analysis and dating of tephra 
(e.g. Caseldine et al. 1999, Buck et al. 2003, 
Blockley et al. 2005, Payne & Blackford 2005, 
Auclair et al. 2007, Gehrels et al. 2008, De 
Vleeschouwer et al. 2008). Tephrochronology is 
firmly established as a useful chronological tool for 
peat-based studies, but a number of problems and 
limitations are apparent. One limitation is that 
tephra layers are not found everywhere in the world, 
or are sometimes characterised by very low shard 
concentrations, making identification difficult. A 
further problem is that tephra fallout is often not 
spatially coherent, leading to a distinct ‘patchiness’ 
of tephra layer distribution (Dugmore et al. 1996). 
Modelling approaches have illustrated that climate 
variability is an important factor in the atmospheric 
transport of Icelandic tephra in the subpolar North 
Atlantic (Lacasse 2001). ‘Taphonomic’ problems 
may also occur in peats as the tephra may have been 

deposited on an uneven surface and re-working can 
occur (Holmes 1998, Payne et al. 2005, Payne & 
Gehrels 2010). In volcanic regions it is often 
difficult to interpret the abundance of inter-mixed 
tephra layers. Also, the zone of highest 
concentration of glass may not necessarily represent 
the primary ash-fall layer but instead reflect the 
erosion of exposures or surfaces containing tephra 
adjacent to a peat bog. 

Some studies have suggested that there is 
chemical alteration of tephra shards in the post-
depositional environment due to cationic leaching 
from the matrix, or complete destruction of the 
silica network (e.g. Pollard et al. 2003). From their 
experimental work, Wolff-Boenish et al. (2004a, 
2004b) proposed a relationship between the lifetime 
of 1 mm-radius natural glass spheres and their silica 
content at 25°C and pH 4. The dissolution rate 
depends mainly on the silica content of the tephras: 
rhyolitic tephras are generally more stable than 
basaltic (Oelkers 2001, Pollard et al. 2003, Wolff-
Boenish et al. 2004a, 2004b). The dissolution 
processes are slow and a 1 mm thick layer of glass 
can take up to 4,000 years to dissolve under these 
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conditions (Wolff-Boenish et al. 2004a, 2004b). On 
the other hand, Hodder et al. (1991) reported how 
glass and ferromagnesian minerals in very acidic 
anoxic peat bogs could be partly or totally 
dissolved, sometimes leading to complete 
dissolution of certain minerals (e.g. biotite) in 
relatively short time periods. 

These different observations illustrate that a 
systematic and thorough analysis of sediments, 
tephra and related alteration products may be needed 
when studying distal tephras in acidic peatland 
environments. Nevertheless, the successful linkage 
of distal tephras to source material in peatlands 
across Europe (e.g. Hall & Pilcher 2002, van den 
Bogaard et al. 2002, Wastegård 2005) and North 
America (e.g. Payne et al. 2008) demonstrates that 
chemical alteration is probably not a critical 
problem when working with peat profiles. 

Several studies have also provided insights into 
the effects of bacterial activities on glass dissolution 
(e.g. Thorseth et al. 1995, Staudigel et al. 1998, 
Brehm et al. 2004). Experimentally, Thorseth et al. 
(1995) found that the dissolution rate can increase 
by a factor of ten after six months of glass alteration 
due to the formation of new bacterial communities. 
Birkefeld et al. (2006) also emphasised that 
dissolution rates are greater in the field than in the 
laboratory, due to extensive biological influence 
from fungi, bacteria and plant roots. However, 
although bacterial action could induce a rapid 
destruction of the glass walls, bacteria will also 
form and/or adsorb amorphous particles (from 
organic or mineral composition) at the grain surface, 
developing an alteration film that could decrease or 
stop the alteration of tephra. Such protective barrier 
films have been studied in the case of basaltic glass 
alteration and the use of this material as radioactive 
stockpile (e.g. Techer et al. 2001). 

There may also be problems in discriminating 
tephra layers using major element geochemistry. For 
example, the historical Hekla 1510 and 1947 tephras 
cannot be separated on the basis of their major 
element geochemistry, and other stratigraphic or 
chronological information is needed for their 
reliable identification (Swindles & Roe 2006). Trace 
and rare earth elemental composition of glass shards 
using laser ablation ICP-MS or ion probe analysis 
may be needed to discriminate between such tephras 
(Pearce et al. 2007, Coulter et al. 2010). 
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